• Aksoy, A., Dowell D. C. , and Snyder C. , 2009: A multicase comparative assessment of the ensemble Kalman filter for assimilation of radar observations. Part I: Storm-scale analyses. Mon. Wea. Rev., 137, 18051824, doi:10.1175/2008MWR2691.1.

    • Search Google Scholar
    • Export Citation
  • Aksoy, A., Dowell D. C. , and Snyder C. , 2010: A multicase comparative assessment of the ensemble Kalman filter for assimilation of radar observations. Part II: Short-range ensemble forecasts. Mon. Wea. Rev., 138, 12731292, doi:10.1175/2009MWR3086.1.

    • Search Google Scholar
    • Export Citation
  • Alexander, P., and de La Torre A. , 2003: A program for the simulation and analysis of open atmospheric balloon soundings. Comput. Phys. Commun., 151, 96120, doi:10.1016/S0010-4655(02)00695-1.

    • Search Google Scholar
    • Export Citation
  • Anderson, J., 2001: An ensemble adjustment Kalman filter for data assimilation. Mon. Wea. Rev., 129, 28842903, doi:10.1175/1520-0493(2001)129<2884:AEAKFF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Anderson, J., 2009: Spatially and temporally varying adaptive covariance inflation for ensemble filters. Tellus, 61A, 7283, doi:10.1111/j.1600-0870.2008.00361.x.

    • Search Google Scholar
    • Export Citation
  • Anderson, J., Hoar T. , Raeder K. , Liu H. , Collins N. , Torn R. , and Avellano A. , 2009: The Data Assimilation Research Testbed: A community facility. Bull. Amer. Meteor. Soc., 90, 12831296, doi:10.1175/2009BAMS2618.1.

    • Search Google Scholar
    • Export Citation
  • Arakawa, A., and Lamb V. R. , 1977: Computational design of the basic dynamical processes of the UCLA general circulation. General Circulation Models of the Atmosphere, J. Chang, Ed., Methods in Computational Physics, Vol. 17, Academic Press, 173–265.

  • Bauer, P., Ohring G. , Kummerow C. , and Auligne T. , 2011: Assimilating satellite observations of clouds and precipitation into NWP models. Bull. Amer. Meteor. Soc., 92, ES25ES28, doi:10.1175/2011BAMS3182.1.

    • Search Google Scholar
    • Export Citation
  • Benjamin, S. G., Jamison B. D. , Moninger W. R. , Sahm S. R. , Schwartz B. E. , and Schlatter T. W. , 2010: Relative short-range forecast impact from aircraft, profiler, radiosonde, VAD, GPS-PW, METAR, and Mesonet observations via the RUC hourly assimilation cycle. Mon. Wea. Rev., 138, 13191343, doi:10.1175/2009MWR3097.1.

    • Search Google Scholar
    • Export Citation
  • Boccara, G., Hertzog A. , Vincent R. A. , and Vial F. , 2008: Estimation of gravity wave momentum flux and phase speeds from quasi-Lagrangian stratospheric balloon flights. Part I: Theory and simulations. J. Atmos. Sci., 65, 30423055, doi:10.1175/2008JAS2709.1.

    • Search Google Scholar
    • Export Citation
  • Carlson, L. A., and Horn W. J. , 1983: New thermal and trajectory model for high-altitude balloons. J. Aircr., 20, 500507, doi:10.2514/3.44900.

    • Search Google Scholar
    • Export Citation
  • Caya, A., Sun J. , and Snyder C. , 2005: A comparison between the 4DVAR and the ensemble Kalman filter techniques for radar data assimilation. Mon. Wea. Rev., 133, 30813094, doi:10.1175/MWR3021.1.

    • Search Google Scholar
    • Export Citation
  • Chen, F., and Dudhia J. , 2001: Coupling an advanced land surface–hydrology model with the Penn State–NCAR MM5 modeling system. Part I: Model implementation and sensitivity. Mon. Wea. Rev., 129, 569585, doi:10.1175/1520-0493(2001)129<0569:CAALSH>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Choi, Y., Ha J.-C. , and Lim G.-H. , 2015: Investigation of the effects of considering balloon drift information on radiosonde data assimilation using the four-dimensional variational method. Wea. Forecasting, 30, 809826, doi:10.1175/WAF-D-14-00161.1.

    • Search Google Scholar
    • Export Citation
  • Cirisan, A., and Coauthors, 2014: Balloon-borne match measurements of midlatitude cirrus clouds. Atmos. Chem. Phys., 14, 73417365, doi:10.5194/acp-14-7341-2014.

    • Search Google Scholar
    • Export Citation
  • Coniglio, M. C., Elmore K. L. , Kain J. S. , Weiss S. J. , Xue M. , and Weisman M. L. , 2010: Evaluation of WRF model output for severe weather forecasting from the 2008 NOAA Hazardous Weather Testbed spring experiment. Wea. Forecasting, 25, 408427, doi:10.1175/2009WAF2222258.1.

    • Search Google Scholar
    • Export Citation
  • Dai, Q., Fang X. , Li X. , and Tian L. , 2012: Performance simulation of high altitude scientific balloons. Adv. Space Res., 49, 10451052, doi:10.1016/j.asr.2011.12.026.

    • Search Google Scholar
    • Export Citation
  • Dowell, D. C., and Wicker L. J. , 2009: Additive noise for storm-scale ensemble data assimilation. J. Atmos. Oceanic Technol., 26, 911927, doi:10.1175/2008JTECHA1156.1.

    • Search Google Scholar
    • Export Citation
  • Dowell, D. C., Zhang F. , Wicker L. J. , Snyder C. , and Crook N. A. , 2004: Wind and temperature retrievals in the 17 May 1981 Arcadia, Oklahoma, supercell: Ensemble Kalman filter experiments. Mon. Wea. Rev., 132, 19822005, doi:10.1175/1520-0493(2004)132<1982:WATRIT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Evensen, G., 2003: The Ensemble Kalman Filter: Theoretical formulation and practical implementation. Ocean Dyn., 53, 343367, doi:10.1007/s10236-003-0036-9.

    • Search Google Scholar
    • Export Citation
  • Faccani, C., and Coauthors, 2009: The impacts of AMMA radiosonde data on the French global assimilation and forecast system. Wea. Forecasting, 24, 12681286, doi:10.1175/2009WAF2222237.1.

    • Search Google Scholar
    • Export Citation
  • Franco, H., and Cathey H. M. , 2004: Thermal performance modeling of NASA’s scientific balloons. Adv. Space Res., 33, 17171721, doi:10.1016/j.asr.2003.07.043.

    • Search Google Scholar
    • Export Citation
  • Gaspari, G., and Cohn S. E. , 1999: Construction of correlation functions in two and three dimensions. Quart. J. Roy. Meteor. Soc., 125, 723757, doi:10.1002/qj.49712555417.

    • Search Google Scholar
    • Export Citation
  • Grell, G. A., and Dévényi D. , 2002: A generalized approach to parameterizing convection combining ensemble and data assimilation techniques. Geophys. Res. Lett., 29, 1693, doi:10.1029/2002GL015311.

    • Search Google Scholar
    • Export Citation
  • Guest, F., Reeder M. , Marks C. , and Karoly D. , 2000: Inertia–gravity waves observed in the lower stratosphere over Macquarie Island. J. Atmos. Sci., 57, 737752, doi:10.1175/1520-0469(2000)057<0737:IGWOIT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hertzog, A., Basdevant C. , Vial F. , and Mechoso C. , 2003: The accuracy of stratospheric analyses in the northern hemisphere inferred from long-duration balloon flights. J. Geophys. Res., 130, 607626, doi:10.1256/qj.03.76.

    • Search Google Scholar
    • Export Citation
  • Hertzog, A., Boccara G. , Vincent R. , Vial F. , and Cocquerez P. , 2008: Estimation of gravity wave momentum flux and phase speeds from quasi-Lagrangian stratospheric balloon flights. Part II: Results from the Vorcore campaign in Antarctica. J. Atmos. Sci., 65, 30563070, doi:10.1175/2008JAS2710.1.

    • Search Google Scholar
    • Export Citation
  • Hoffman, R. N., Grassotti C. , Isaacs R. G. , Louis J.-F. , Nehrkorn T. , and Norquist D. C. , 1990: Assessment of the impact of simulated satellite lidar wind and retrieved 183 GHz water vapor observations on a global data assimilation system. Mon. Wea. Rev., 118, 25132542, doi:10.1175/1520-0493(1990)118<2513:AOTIOS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hong, S.-Y., and Pan H.-L. , 1996: Nonlocal boundary layer vertical diffusion in a medium-range forecast model. Mon. Wea. Rev., 124, 23222339, doi:10.1175/1520-0493(1996)124<2322:NBLVDI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hong, S.-Y., Dudhia J. , and Chen S.-H. , 2004: A revised approach to ice microphysical processes for the bulk parameterization of clouds and precipitation. Mon. Wea. Rev., 132, 103120, doi:10.1175/1520-0493(2004)132<0103:ARATIM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hoskins, B., McIntyre M. , and Robertson A. , 1985: On the use and significance of isentropic potential vorticity maps. Quart. J. Roy. Meteor. Soc., 111, 877946, doi:10.1002/qj.49711147002.

    • Search Google Scholar
    • Export Citation
  • Iacono, M. J., Delamere J. S. , Mlawer E. J. , Shephard M. W. , Clough S. A. , and Collins W. D. , 2008: Radiative forcing by long-lived greenhouse gases: Calculations with the AER radiative transfer models. J. Geophys. Res., 113, D13103, doi:10.1029/2008JD009944.

    • Search Google Scholar
    • Export Citation
  • Inai, Y., and Coauthors, 2013: Dehydration in the tropical tropopause layer estimated from the water vapor match. Atmos. Chem. Phys., 13, 86238642, doi:10.5194/acp-13-8623-2013.

    • Search Google Scholar
    • Export Citation
  • Jewtoukoff, V., Hertzog A. , Plougonven R. , de la Cámara A. , and Lott F. , 2015: Comparison of gravity waves in the Southern Hemisphere derived from balloon observations and the ECMWF analyses. J. Atmos. Sci., 72, 34493468, doi:10.1175/JAS-D-14-0324.1.

    • Search Google Scholar
    • Export Citation
  • Kahl, J. D., and Samson P. J. , 1986: Uncertainty in trajectory calculations due to low resolution meteorological data. J. Climate Appl. Meteor., 25, 18161831, doi:10.1175/1520-0450(1986)025<1816:UITCDT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Keil, M., Heun M. , Austin J. , Lahoz W. , Lou G. P. , and O’Neill A. , 2001: The use of long-duration balloon data to determine the accuracy of stratospheric analyses and forecasts. J. Geophys. Res., 106, 10 29910 312, doi:10.1029/2000JD900420.

    • Search Google Scholar
    • Export Citation
  • Knudsen, B. M., and Carver G. D. , 1994: Accuracy of the isentropic trajectories calculated for the EASOE campaign. Geophys. Res. Lett., 21, 11991202, doi:10.1029/93GL02437.

    • Search Google Scholar
    • Export Citation
  • Knudsen, B. M., Pommereau J.-P. , Garnier A. , Nunez-Pinharanda M. , Denis L. , Letrenne G. , Durand M. , and Rosen J. M. , 2001: Comparison of stratospheric air parcel trajectories based on different meteorological analyses. J. Geophys. Res., 106, 34153424, doi:10.1029/2000JD900608.

    • Search Google Scholar
    • Export Citation
  • Kreith, F., and Kreider J. F. , 1974: Numerical prediction of the performance of high altitude balloons. NCAR Tech. Note NCAR-TN/STR-65, 132 pp.

  • Kuo, Y.-H., Skumanich M. , Haagenson P. L. , and Chang J. S. , 1985: The accuracy of trajectory models as revealed by the observing system simulation experiments. Mon. Wea. Rev., 113, 18521867, doi:10.1175/1520-0493(1985)113<1852:TAOTMA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lebeau, A., and Sanfourche J.-P. , 2011: Les ballons au service de la recherche: L’aérostation scientifique des origines à nos jours. Histoire des Sciences, 432 pp.

  • Liu, Z., Schwartz C. S. , Snyder C. , and Ha S.-Y. , 2012: Impact of assimilating AMSU-A radiances on forecasts of 2008 Atlantic tropical cyclones initialized with a limited-area ensemble Kalman filter. Mon. Wea. Rev., 140, 40174034, doi:10.1175/MWR-D-12-00083.1.

    • Search Google Scholar
    • Export Citation
  • Molteni, F., Buizza R. , Palmer T. N. , and Petroliagis T. , 1996: The ECMWF Ensemble Prediction System: Methodology and validation. Quart. J. Roy. Meteor. Soc., 122, 73119, doi:10.1002/qj.49712252905.

    • Search Google Scholar
    • Export Citation
  • Otkin, J. A., 2012: Assessing the impact of the covariance localization radius when assimilating infrared brightness temperature observations using an ensemble Kalman filter. Mon. Wea. Rev., 140, 543561, doi:10.1175/MWR-D-11-00084.1.

    • Search Google Scholar
    • Export Citation
  • Özgökmen, T. M., Griffa A. , Mariano A. J. , and Piterbarg L. I. , 2000: On the predictability of Lagrangian trajectories in the ocean. J. Atmos. Oceanic Technol., 17, 366383, doi:10.1175/1520-0426(2000)017<0366:OTPOLT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Özgökmen, T. M., Piterbarg L. I. , Mariano A. J. , and Ryan E. H. , 2001: Predictability of drifter trajectories in the tropical Pacific Ocean. J. Phys. Oceanogr., 31, 26912720, doi:10.1175/1520-0485(2001)031<2691:PODTIT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Pavelin, E., Whiteway J. , and Vaughan G. , 2001: Observation of gravity wave generation and breaking in the lowermost stratosphere. J. Geophys. Res., 106, 51735179, doi:10.1029/2000JD900480.

    • Search Google Scholar
    • Export Citation
  • Payan, S., and Coauthors, 2010: STRAPOLÉTÉ: Studying summer polar stratosphere. Geophysical Research Abstracts, Vol. 12, Abstract EGU2010-10057-1. [Available online at http://meetingorganizer.copernicus.org/EGU2010/EGU2010-10057-1.pdf.]

    • Search Google Scholar
    • Export Citation
  • Pettifer, R., 2009: From observations to forecasts—Part 2. The development of in situ upper air measurements. Weather, 64, 302308, doi:10.1002/wea.484.

    • Search Google Scholar
    • Export Citation
  • Piterbarg, L. I., 2001: Short-term prediction of Lagrangian trajectories. J. Atmos. Oceanic Technol., 18, 13981410, doi:10.1175/1520-0426(2001)018<1398:STPOLT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Plougonven, R., Teitelbaum H. , and Zeitlin V. , 2003: Inertia gravity wave generation by the tropospheric midlatitude jet as given by the Fronts and Atlantic Storm-Track Experiment radio soundings. J. Geophys. Res., 108, 4686, doi:10.1029/2003JD003535.

    • Search Google Scholar
    • Export Citation
  • Plougonven, R., Hertzog A. , and Guez L. , 2013: Gravity waves over Antarctica and the Southern Ocean: Consistent momentum fluxes in mesoscale simulations and stratospheric balloon observations. Quart. J. Roy. Meteor. Soc., 139, 101118, doi:10.1002/qj.1965.

    • Search Google Scholar
    • Export Citation
  • Podglajen, A., Hertzog A. , Plougonven R. , and Žagar N. , 2014: Assessment of the accuracy of (re)analyses in the equatorial lower stratosphere. J. Geophys. Res. Atmos., 119, 11 16611 188, doi:10.1002/2014JD021849.

    • Search Google Scholar
    • Export Citation
  • Powers, J. G., Manning K. W. , Bromwich D. H. , Cassano J. J. , and Cayette A. M. , 2012: A decade of Antarctica science through AMPS. Bull. Amer. Meteor. Soc., 93, 16991712, doi:10.1175/BAMS-D-11-00186.1.

    • Search Google Scholar
    • Export Citation
  • Rex, M., and Coauthors, 1997: Prolonged stratospheric ozone loss in the 1995–96 Arctic winter. Nature, 389, 835838, doi:10.1038/39849.

    • Search Google Scholar
    • Export Citation
  • Rex, M., and Coauthors, 1998: In situ measurements of stratospheric ozone depletion rates in the Arctic winter 1991/1992: A Lagrangian approach. J. Geophys. Res., 103, 58435853, doi:10.1029/97JD03127.

    • Search Google Scholar
    • Export Citation
  • Romero, M., Rougero M. , and Tockert C. , 1981: The thermal behavior of pressurized stratospheric balloons and the infrared telluric flux. Adv. Space Res., 1, 183190, doi:10.1016/0273-1177(81)90466-X.

    • Search Google Scholar
    • Export Citation
  • Sato, K., 1994: A statistical study of the structure, saturation and sources of inertio-gravity waves in the lower stratosphere observed with the MU radar. J. Atmos. Terr. Phys., 56, 755774, doi:10.1016/0021-9169(94)90131-7.

    • Search Google Scholar
    • Export Citation
  • Shutts, G. J., and Vosper S. B. , 2011: Stratospheric gravity waves revealed in NWP model forecasts. Quart. J. Roy. Meteor. Soc., 137, 303317, doi:10.1002/qj.763.

    • Search Google Scholar
    • Export Citation
  • Simmons, A., Hortal M. , Kelly G. , McNally A. , Untch A. , and Uppala S. , 2005: ECMWF analyses and forecasts of stratospheric winter polar vortex breakup: September 2002 in the Southern Hemisphere and related events. J. Atmos. Sci., 62, 668689, doi:10.1175/JAS-3322.1.

    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., Klemp J. B. , Dudhia J. , Gill D. O. , Barker D. M. , Wang W. , and Powers J. G. , 2005: A description of the Advanced Research WRF version 2. NCAR Tech. Note NCAR/TN-468+STR, 88 pp., doi:10.5065/D6DZ069T.

  • Skamarock, W. C., and Coauthors, 2008: A description of the Advanced Research WRF version 3. NCAR Tech. Note NCAR/TN-475+STR, 113 pp., doi:10.5065/D68S4MVH.

  • Snyder, C., and Zhang F. , 2003: Assimilation of simulated Doppler radar observations with an ensemble Kalman filter. Mon. Wea. Rev., 131, 16631677, doi:10.1175//2555.1.

    • Search Google Scholar
    • Export Citation
  • Tong, M., and Xue M. , 2005: Ensemble Kalman filter assimilation of Doppler radar data with a compressible nonhydrostatic model: OSS experiments. Mon. Wea. Rev., 133, 17891807, doi:10.1175/MWR2898.1.

    • Search Google Scholar
    • Export Citation
  • Vial, F., Hertzog A. , Mechoso C. R. , Basdevant C. , Cocquerez P. , Dubourg V. , and Nouel F. , 2001: A study of the dynamics of the equatorial lower stratosphere by use of ultra-long-duration balloons: 1. Planetary scales. J. Geophys. Res., 106, 22 72522 743, doi:10.1029/2000JD000241.

    • Search Google Scholar
    • Export Citation
  • Walmsley, J. L., and Mailhot J. , 1983: On the numerical accuracy of trajectory models for long-range transport of atmospheric pollutants. Atmos.–Ocean, 21, 1439, doi:10.1080/07055900.1983.9649153.

    • Search Google Scholar
    • Export Citation
  • Wheatley, D., Stensrud D. J. , Dowell D. C. , and Yussouf N. , 2012: Application of WRF mesoscale data assimilation system to springtime severe weather events 2007–09. Mon. Wea. Rev., 140, 15391557, doi:10.1175/MWR-D-11-00106.1.

    • Search Google Scholar
    • Export Citation
  • Wicker, L. J., and Skamarock W. C. , 2002: Time splitting methods for elastic models using forward time schemes. Mon. Wea. Rev., 130, 20882097, doi:10.1175/1520-0493(2002)130<2088:TSMFEM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wu, D. L., and Eckermann S. D. , 2008: Global gravity wave variances from Aura MLS: Characteristics and interpretation. J. Atmos. Sci., 65, 36953718, doi:10.1175/2008JAS2489.1.

    • Search Google Scholar
    • Export Citation
  • Zhang, F., Snyder C. , and Sun J. , 2004: Impacts of initial estimate and observation availability on convective-scale data assimilation with an ensemble Kalman filter. Mon. Wea. Rev., 132, 12381253, doi:10.1175/1520-0493(2004)132<1238:IOIEAO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 275 137 0
PDF Downloads 241 118 0

On the Prediction of Stratospheric Balloon Trajectories: Improving Winds with Mesoscale Simulations

View More View Less
  • 1 Laboratoire de Météorologie Dynamique, CNRS, Ecole Polytechnique, Palaiseau, France
  • | 2 National Center for Atmospheric Research, Boulder, Colorado
Restricted access

Abstract

Safety compliance issues for operational studies of the atmosphere with balloons require quantifying risks associated with descent and developing strategies to reduce the uncertainties at the location of the touchdown point. Trajectory forecasts are typically computed from weather forecasts produced by an operational center, for example, the European Centre for Medium-Range Weather Forecasts. This study uses past experiments to investigate strategies for improving these forecasts. Trajectories for open stratospheric balloon (OSB) short-term flights are computed using mesoscale simulations with the Weather and Research Forecasting (WRF) Model initialized with ECMWF operational forecasts and are assimilated with radio soundings using the Data Assimilation Research Testbed (DART) ensemble Kalman filter, for three case studies during the Strapolété 2009 campaign in Sweden. The results are very variable: in one case, the error in the final simulated position is reduced by 90% relative to the forecast using the ECMWF winds, while in another case the forecast is hardly improved. Nonetheless, they reveal the main source of forecasting error: during the ceiling phase, errors due to unresolved inertia–gravity waves accumulate as the balloon continuously experiences one phase of a wave for a few hours, whereas they essentially average out during the ascent and descent phases, when the balloon rapidly samples through whole wave packets. This sensitivity to wind during the ceiling phase raises issues regarding the feasibility of such forecasts and the observations that would be needed. The ensemble spread is also analyzed, and it is noted that the initial ensemble perturbations should probably be improved in the future for better forecasts.

Current affiliation: Department of Meteorology, The Pennsylvania State University, University Park, Pennsylvania.

The National Center for Atmospheric Research is sponsored by the National Science Foundation.

Corresponding author address: Valérian Jewtoukoff, Department of Meteorology, The Pennsylvania State University, 406 Walker Building, University Park, PA 16802. E-mail: vjewtou@psu.edu

Abstract

Safety compliance issues for operational studies of the atmosphere with balloons require quantifying risks associated with descent and developing strategies to reduce the uncertainties at the location of the touchdown point. Trajectory forecasts are typically computed from weather forecasts produced by an operational center, for example, the European Centre for Medium-Range Weather Forecasts. This study uses past experiments to investigate strategies for improving these forecasts. Trajectories for open stratospheric balloon (OSB) short-term flights are computed using mesoscale simulations with the Weather and Research Forecasting (WRF) Model initialized with ECMWF operational forecasts and are assimilated with radio soundings using the Data Assimilation Research Testbed (DART) ensemble Kalman filter, for three case studies during the Strapolété 2009 campaign in Sweden. The results are very variable: in one case, the error in the final simulated position is reduced by 90% relative to the forecast using the ECMWF winds, while in another case the forecast is hardly improved. Nonetheless, they reveal the main source of forecasting error: during the ceiling phase, errors due to unresolved inertia–gravity waves accumulate as the balloon continuously experiences one phase of a wave for a few hours, whereas they essentially average out during the ascent and descent phases, when the balloon rapidly samples through whole wave packets. This sensitivity to wind during the ceiling phase raises issues regarding the feasibility of such forecasts and the observations that would be needed. The ensemble spread is also analyzed, and it is noted that the initial ensemble perturbations should probably be improved in the future for better forecasts.

Current affiliation: Department of Meteorology, The Pennsylvania State University, University Park, Pennsylvania.

The National Center for Atmospheric Research is sponsored by the National Science Foundation.

Corresponding author address: Valérian Jewtoukoff, Department of Meteorology, The Pennsylvania State University, 406 Walker Building, University Park, PA 16802. E-mail: vjewtou@psu.edu
Save