• Calbó, J., and Sabburg J. , 2008: Feature extraction from whole-sky ground-based images for cloud-type recognition. J. Atmos. Oceanic Technol., 25, 314, doi:10.1175/2007JTECHA959.1.

    • Search Google Scholar
    • Export Citation
  • Cazorla, A., Olmo F. J. , and Alados-Arboledas L. , 2008: Development of a sky imager for cloud cover assessment. J. Opt. Soc. Amer., 25A, 2939, doi:10.1364/JOSAA.25.000029.

    • Search Google Scholar
    • Export Citation
  • Dybbroe, A., Karlsson K. G. , and Thoss A. , 2005: NWCSAF AVHRR cloud detection and analysis using dynamic thresholds and radiative transfer modeling. Part II: Tuning and validation. J. Appl. Meteor., 44, 5571, doi:10.1175/JAM-2189.1.

    • Search Google Scholar
    • Export Citation
  • Gasparini, F., and Schettini R. , 2004: Color balancing of digital photos using simple image statistics. Pattern Recognit., 37, 12011217, doi:10.1016/j.patcog.2003.12.007.

    • Search Google Scholar
    • Export Citation
  • Ghonima, M. S., Urquhart B. , Chow C. W. , Shields J. E. , Cazorla A. , and Kleissl J. , 2012: A method for cloud detection and opacity classification based on ground based sky imagery. Atmos. Meas. Tech., 5, 28812892, doi:10.5194/amt-5-2881-2012.

    • Search Google Scholar
    • Export Citation
  • Heinle, A., Macke A. , and Srivastav A. , 2010: Automatic cloud classification of whole sky images. Atmos. Meas. Tech., 3, 557567, doi:10.5194/amt-3-557-2010.

    • Search Google Scholar
    • Export Citation
  • Horváth, G., Barta A. , Gál J. , Suhai B. , and Haiman O. , 2002: Ground-based full-sky imaging polarimetry of rapidly changing skies and its use for polarimetric cloud detection. Appl. Opt., 41, 543559, doi:10.1364/AO.41.000543.

    • Search Google Scholar
    • Export Citation
  • Hoyt, D. V., 1978: A model for the calculation of solar global insolation. Sol. Energy, 21, 2735, doi:10.1016/0038-092X(78)90113-5.

  • Huo, J., and Lu D. , 2009: Cloud determination of all-sky images under low-visibility conditions. J. Atmos. Oceanic Technol., 26, 21722181, doi:10.1175/2009JTECHA1324.1.

    • Search Google Scholar
    • Export Citation
  • IPCC, 2007: Climate Change 2007: The Physical Science Basis. Cambridge University Press, 996 pp.

  • Kazantzidis, A., Tzoumanikas P. , Bais A. F. , Fotopoulos S. , and Economou G. , 2012: Cloud detection and classification with the use of whole-sky ground-based images. Atmos. Res., 113, 8088, doi:10.1016/j.atmosres.2012.05.005.

    • Search Google Scholar
    • Export Citation
  • Kreuter, A., Zangerl M. , Schwarzmann M. , and Blumthaler M. , 2009: All-sky imaging: A simple, versatile system for atmospheric research. Appl. Opt., 48, 10911097, doi:10.1364/AO.48.001091.

    • Search Google Scholar
    • Export Citation
  • Li, Q., Lu W. , and Yang J. , 2011: A hybrid thresholding algorithm for cloud detection on ground-based color images. J. Atmos. Oceanic Technol., 28, 12861296, doi:10.1175/JTECH-D-11-00009.1.

    • Search Google Scholar
    • Export Citation
  • Liu, Z., Vaughan M. A. , Winker D. M. , Hostetler C. A. , Poole L. R. , Hlavka D. , Hart W. , and McGill M. , 2004: Use of probability distribution functions for discriminating between cloud and aerosol in lidar backscatter data. J. Geophys. Res., 109, D15202, doi:10.1029/2004JD004732.

    • Search Google Scholar
    • Export Citation
  • Long, C. N., Sabburg J. M. , Calbó J. , and Pagès D. , 2006: Retrieving cloud characteristics from ground-based daytime color all-sky images. J. Atmos. Oceanic Technol., 23, 633652, doi:10.1175/JTECH1875.1.

    • Search Google Scholar
    • Export Citation
  • Mantelli Neto, S. L., von Wangenheim A. , Pereira E. B. , and Comunello E. , 2010: The use of Euclidean geometric distance on RGB color space for the classification of sky and cloud patterns. J. Atmos. Oceanic Technol., 27, 15041517, doi:10.1175/2010JTECHA1353.1.

    • Search Google Scholar
    • Export Citation
  • Marty, C., and Philipona R. , 2000: The clear-sky index to separate clear-sky from cloudy-sky situations in climate research. Geophys. Res. Lett., 27, 26492652, doi:10.1029/2000GL011743.

    • Search Google Scholar
    • Export Citation
  • Pfister, G., McKenzie R. L. , Liley J. B. , Thomas A. , Forgan B. W. , and Long C. N. , 2003: Cloud coverage based on all-sky imaging and its impact on surface solar irradiance. J. Appl. Meteor., 42, 14211434, doi:10.1175/1520-0450(2003)042<1421:CCBOAI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Probst, P., Rizzi R. , Tosi E. , Lucarini V. , and Maestri T. , 2012: Total cloud cover from satellite observations and climate models. Atmos. Res., 107, 161170, doi:10.1016/j.atmosres.2012.01.005.

    • Search Google Scholar
    • Export Citation
  • Ricciardelli, E., Romano F. , and Cuomo V. , 2008: Physical and statistical approaches for cloud identification using Meteosat Second Generation-Spinning Enhanced Visible and Infrared Imager data. Remote Sens. Environ., 112, 27412760, doi:10.1016/j.rse.2008.01.015.

    • Search Google Scholar
    • Export Citation
  • Rossow, W. B., and Schiffer R. A. , 1991: ISCCP cloud data products. Bull. Amer. Meteor. Soc., 72, 220, doi:10.1175/1520-0477(1991)072<0002:ICDP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Sabburg, J., and Wong J. , 1999: Evaluation of a ground-based sky camera system for use in surface irradiance measurement. J. Atmos. Oceanic Technol., 16, 752759, doi:10.1175/1520-0426(1999)016<0752:EOAGBS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Saito, M., Iwabuchi H. , and Murata I. , 2016: Estimation of spectral distribution of sky radiance using a commercial digital camera. Appl. Opt., 55, 415424, doi:10.1364/AO.55.000415.

    • Search Google Scholar
    • Export Citation
  • Shields, J. E., Johnson R. W. , and Karr M. E. , 1994: Automated whole sky imagers for continuous day and night cloud field assessment. Proceedings of the Cloud Impacts on DOD Operations and Systems 1993 Conference (CIDOS–93), D. D. Grantham, Ed., Environmental Research Papers 1152, Phillips Laboratory Tech. Rep. PL-TR-94-2188, Hanscom Air Force Base, 379–384.

  • Shimizu, A., Sugimoto N. , and Matsui I. , 2010: Detailed description of data processing system for lidar network in East Asia. 25th International Laser Radar Conference 2010 (ILRC 25), Vol. 2, International Coordination Group on Laser Atmospheric Studies, 911913.

  • Shupe, M. D., 2007: A ground-based multisensor cloud phase classifier. Geophys. Res. Lett., 34, L22809, doi:10.1029/2007GL031008.

  • Singh, M., and Glennen M. , 2005: Automated ground-based cloud recognition. Pattern Anal. Appl., 8, 258271, doi:10.1007/s10044-005-0007-5.

    • Search Google Scholar
    • Export Citation
  • Slater, D. W., Long C. N. , and Tooman T. P. , 2001: Total sky imager/whole sky imager cloud fraction comparison. 11th ARM Science Team Meeting Proc., Atlanta, GA, ARM, 11 pp. [Available online at https://www.arm.gov/publications/proceedings/conf11/extended_abs/slater_dw.pdf.]

  • Souza-Echer, M. P., Pereira E. B. , Bins L. S. , and Andrade M. A. R. , 2006: A simple method for the assessment of the cloud cover state in high-latitude regions by a ground-based digital camera. J. Atmos. Oceanic Technol., 23, 437447, doi:10.1175/JTECH1833.1.

    • Search Google Scholar
    • Export Citation
  • Stephens, G. L., 2005: Cloud feedbacks in the climate system: A critical review. J. Climate, 18, 237273, doi:10.1175/JCLI-3243.1.

  • Yamashita, M., Yoshimura M. , and Nakashizuka T. , 2004: Cloud cover estimation using multitemporal hemisphere imageries. XXth International Society for Photogrammetry and Remote Sensing Congress, Technical Commission VII, O. Altan, Ed., Vol. XXXV, Part B7, ISPRS, 826829.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 6 6 6
PDF Downloads 1 1 1

Cloud Discrimination from Sky Images Using a Clear-Sky Index

View More View Less
  • 1 Center for Atmospheric and Oceanic Studies, Graduate School of Science, Tohoku University, Sendai, Japan
Restricted access

Abstract

Cloud fraction mainly affects the incoming solar irradiance at the surface and is measured with ground-based sky imagers. Although several methods enable cloud discrimination from digital sky images, cloud discrimination methods are still being developed to improve the classification accuracy. This study presents two methods for effective cloud discrimination from digital sky images using a newly defined clear-sky index (CSI). The CSI represents the degree of similarity of the spectral distribution to that expected for clear sky. In the advanced method (AM), the CSI is obtained from red–green–blue (RGB) signals in RAW format by linear transformation by taking into account the solar spectrum at the top of the atmosphere, the ozone transmittance, and the spectral response of the RGB channels. The simplified method (SM) uses digital signals in a JPEG format assuming prescribed color matching functions and atmospheric states. The AM can correctly classify broken gray clouds as cloud and aureole as clear sky in most cases, and it discriminates clear sky and clouds with a correct classification rate of 93.6% based on a comparison with the zenith-pointing lidar measurements. The SM demonstrates accurate cloud discrimination performance as well as the red-to-blue ratio method does. The use of RAW format data allows for more accurate image-based cloud discrimination.

Corresponding author address: Masanori Saito, Center for Atmospheric and Oceanic Studies, Graduate School of Science, Tohoku University, 6-3 Aoba Aramaki-aza, Aoba-ku, Sendai, Miyagi 980-8578, Japan. E-mail: masanori.saito.p4@dc.tohoku.ac.jp

Abstract

Cloud fraction mainly affects the incoming solar irradiance at the surface and is measured with ground-based sky imagers. Although several methods enable cloud discrimination from digital sky images, cloud discrimination methods are still being developed to improve the classification accuracy. This study presents two methods for effective cloud discrimination from digital sky images using a newly defined clear-sky index (CSI). The CSI represents the degree of similarity of the spectral distribution to that expected for clear sky. In the advanced method (AM), the CSI is obtained from red–green–blue (RGB) signals in RAW format by linear transformation by taking into account the solar spectrum at the top of the atmosphere, the ozone transmittance, and the spectral response of the RGB channels. The simplified method (SM) uses digital signals in a JPEG format assuming prescribed color matching functions and atmospheric states. The AM can correctly classify broken gray clouds as cloud and aureole as clear sky in most cases, and it discriminates clear sky and clouds with a correct classification rate of 93.6% based on a comparison with the zenith-pointing lidar measurements. The SM demonstrates accurate cloud discrimination performance as well as the red-to-blue ratio method does. The use of RAW format data allows for more accurate image-based cloud discrimination.

Corresponding author address: Masanori Saito, Center for Atmospheric and Oceanic Studies, Graduate School of Science, Tohoku University, 6-3 Aoba Aramaki-aza, Aoba-ku, Sendai, Miyagi 980-8578, Japan. E-mail: masanori.saito.p4@dc.tohoku.ac.jp
Save