• Avila, L. A., Pasch R. J. , and Jiing J.-G. , 2000: Atlantic tropical systems of 1996 and 1997: Years of contrasts. Mon. Wea. Rev., 128, 36953706, doi:10.1175/1520-0493(2000)128<3695:ATSOAY>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Berrisford, P., and Coauthors, 2011: The ERA-Interim archive version 2.0. ERA Report Series 1, ECMWF, 23 pp. [Available online at http://www.ecmwf.int/sites/default/files/elibrary/2011/8174-era-interim-archive-version-20.pdf.]

  • Berry, G., and Thorncroft C. , 2005: Case study of an intense African easterly wave. Mon. Wea. Rev., 133, 752766, doi:10.1175/MWR2884.1.

    • Search Google Scholar
    • Export Citation
  • Burpee, R. W., 1974: Characteristics of North African easterly waves during the summer of 1968 and 1969. J. Atmos. Sci., 31, 15561570, doi:10.1175/1520-0469(1974)031<1556:CONAEW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Carlson, T. N., 1969a: Some remarks on African disturbances and their progress over the tropical Atlantic. Mon. Wea. Rev., 97, 716726, doi:10.1175/1520-0493(1969)097<0716:SROADA>2.3.CO;2.

    • Search Google Scholar
    • Export Citation
  • Carlson, T. N., 1969b: Synoptic histories of three African wave disturbances that developed into Atlantic hurricanes. Mon. Wea. Rev., 97, 921925, doi:10.1175/1520-0493(1969)097<0256:SHOTAD>2.3.CO;2.

    • Search Google Scholar
    • Export Citation
  • Charney, J. G., and Stern M. E. , 1962: On the stability of internal baroclinic jets in a rotating atmosphere. J. Atmos. Sci., 19, 159172, doi:10.1175/1520-0469(1962)019<0159:OTSOIB>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Chen, T.-C., 2006: Characteristics of African easterly waves depicted by ECMWF reanalyses for 1991–2000. Mon. Wea. Rev., 134, 35393566, doi:10.1175/MWR3259.1.

    • Search Google Scholar
    • Export Citation
  • Chen, T.-C., Wang S.-Y. , and Clark A. J. , 2008: North Atlantic hurricanes contributed by African easterly waves north and south of the African easterly jet. J. Climate, 21, 67676776, doi:10.1175/2008JCLI2523.1.

    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, doi:10.1002/qj.828.

    • Search Google Scholar
    • Export Citation
  • Dunkerton, T. J., 1993: Observation of 3–6-day meridional wind oscillations over the tropical Pacific, 1973–1992: Vertical structure and interannual variability. J. Atmos. Sci., 50, 32923307, doi:10.1175/1520-0469(1993)050<3292:OODMWO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Fine, A. S., Nicholls D. P. , and Mogul D. J. , 2010: Assessing instantaneous synchrony of nonlinear nonstationary oscillators in the brain. J. Neurosci. Methods, 186, 4251,doi:10.1016/j.jneumeth.2009.10.023.

    • Search Google Scholar
    • Export Citation
  • Fink, A. H., Vincent D. G. , Reiner P. M. , and Speth P. , 2004: Mean state and wave disturbances during Phase I, II, and III of GATE based on ERA-40. Mon. Wea. Rev., 132, 16611683, doi:10.1175/1520-0493(2004)132<1661:MSAWDD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Frank, N. L., 1975: Atlantic tropical systems of 1974. Mon. Wea. Rev., 103, 294300, doi:10.1175/1520-0493(1975)103<0294:ATSO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Frank, W. M., and Roundy P. E. , 2006: The role of tropical waves in tropical cyclogenesis. Mon. Wea. Rev., 134, 23972417, doi:10.1175/MWR3204.1.

    • Search Google Scholar
    • Export Citation
  • Goldenberg, S. B., and Shapiro L. J. , 1996: Physical mechanisms for the association of El Nino and West African rainfall with Atlantic major hurricanes. J. Climate, 9, 11691187, doi:10.1175/1520-0442(1996)009<1169:PMFTAO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Goldenberg, S. B., Landsea C. W. , Mestas-Nuñez A. M. , and Gray W. M. , 2001: The recent increase in Atlantic hurricane activity: Causes and implications. Science, 293, 474479, doi:10.1126/science.1060040.

    • Search Google Scholar
    • Export Citation
  • Hendon, H. H., and Wheeler M. C. , 2008: Some space–time spectral analyses of tropical convection and planetary-scale waves. J. Atmos. Sci., 65, 29362948, doi:10.1175/2008JAS2675.1.

    • Search Google Scholar
    • Export Citation
  • Hopsch, S. B., Thorncroft C. D. , Hodges K. , and Aiyyer A. , 2007: West African storm tracks and their relationship to Atlantic tropical cyclones. J. Climate, 20, 24682483, doi:10.1175/JCLI4139.1.

    • Search Google Scholar
    • Export Citation
  • Hopsch, S. B., Thorncroft C. D. , and Tyle K. R. , 2010: Analysis of African easterly wave structures and their role in influencing tropical cyclogenesis. Mon. Wea. Rev., 138, 13991419, doi:10.1175/2009MWR2760.1.

    • Search Google Scholar
    • Export Citation
  • Huang, N. E., Steven R. L. , and Shen Z. , 1996: The mechanism for frequency downshift in nonlinear wave evolution. Adv. Appl. Mech., 32, 59117, doi:10.1016/S0065-2156(08)70076-0.

    • Search Google Scholar
    • Export Citation
  • Huang, N. E., and Coauthors, 1998: The empirical mode decomposition and Hilbert spectrum for nonlinear and non-stationary time series analysis. Proc. Roy. Soc. London, 454A, 903995, doi:10.1098/rspa.1998.0193.

    • Search Google Scholar
    • Export Citation
  • Kistler, R., and Coauthors, 2001: The NCEP–NCAR 50-Year Reanalysis: Monthly means CD-ROM and documentation. Bull. Amer. Meteor. Soc., 82, 247267, doi:10.1175/1520-0477(2001)082<0247:TNNYRM>2.3.CO;2.

    • Search Google Scholar
    • Export Citation
  • Landsea, C. W., 1993: A climatology of intense (or major) Atlantic hurricanes. Mon. Wea. Rev., 121, 17031713, doi:10.1175/1520-0493(1993)121<1703:ACOIMA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lau, K.-H., and Lau N.-C. , 1990: Observed structure and propagation characteristics of tropical summertime synoptic-scale disturbances. Mon. Wea. Rev., 118, 18881913, doi:10.1175/1520-0493(1990)118<1888:OSAPCO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lorenz, E., 1963: Deterministic nonperiodic flow. J. Atmos. Sci., 20, 130141, doi:10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2.

  • Merrill, R. T., 1984: A comparison of large and small tropical cyclones. Mon. Wea. Rev., 112, 14081418, doi:10.1175/1520-0493(1984)112<1408:ACOLAS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Nielsen-Gammon, J. W., and Gold D. A. , 2006: Dynamical diagnosis: A comparison of quasigeostrophy and Ertel potential vorticity. Synoptic–Dynamic Meteorology and Weather Analysis and Forecasting, Meteor. Monogr., No. 55, Amer. Meteor. Soc., 183–202, doi:10.1007/978-0-933876-68-2_9.

  • North, G. R., 1984: Empirical orthogonal functions and normal modes. J. Atmos. Sci., 41, 879887, doi:10.1175/1520-0469(1984)041<0879:EOFANM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Parker, D. J., and Coauthors, 2005: The diurnal cycle of the West African monsoon circulation. Quart. J. Roy. Meteor. Soc., 131, 28392860, doi:10.1256/qj.04.52.

    • Search Google Scholar
    • Export Citation
  • Pigorini, A., Casali A. G. , Casarotto S. , Ferrarelli F. , Baselli G. , Mariotti M. , Massimini M. , and Rosanova M. C. E. , 2011: Time–frequency spectral analysis of TMS-evoked EEG oscillations by means of Hilbert–Huang transform. J. Neurosci. Methods, 198, 236245, doi:10.1016/j.jneumeth.2011.04.013.

    • Search Google Scholar
    • Export Citation
  • Pytharoulis, I., and Thorncroft C. , 1999: The low-level structure of African easterly waves in 1995. Mon. Wea. Rev., 127, 22662280, doi:10.1175/1520-0493(1999)127<2266:TLLSOA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Reed, R. J., Norquist D. C. , and Recker E. E. , 1977: The structure and properties of African Wave disturbances as observed during phase III of GATE. Mon. Wea. Rev., 105, 317333, doi:10.1175/1520-0493(1977)105<0317:TSAPOA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Reed, R. J., Hollingsworth A. , Heckley W. A. , and Delsol F. , 1988: An evaluation of the ECMWF operational system in analyzing and forecasting easterly wave disturbances over Africa and the tropical Atlantic. Mon. Wea. Rev., 116, 824865, doi:10.1175/1520-0493(1988)116<0824:AEOTPO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Salisbury, J. I., and Wimbush M. , 2002: Using modern time series analysis techniques to predict ENSO events from the SOI time series. Nonlinear Processes Geophys., 9, 341345, doi:10.5194/npg-9-341-2002.

    • Search Google Scholar
    • Export Citation
  • Schlurmann, T., 2002: Spectral frequency analysis of nonlinear water waves derived from the Hilbert-Huang transformation. J. Offshore Mech. Arct. Eng., 124, 2228, doi:10.1115/1.1423911.

    • Search Google Scholar
    • Export Citation
  • Shen, B.-W., 2014: Nonlinear feedback in a five-dimensional Lorenz model. J. Atmos. Sci., 71, 17011723, doi:10.1175/JAS-D-13-0223.1.

  • Shen, B.-W., 2015a: Nonlinear feedback in a six-dimensional Lorenz model: Impact of an additional heating term. Nonlinear Processes Geophys., 22, 749764, doi:10.5194/npg-22-749-2015.

    • Search Google Scholar
    • Export Citation
  • Shen, B.-W., 2015b: Parameterization of negative nonlinear feedback using a five-dimensional Lorenz model. Fractal Geom. Nonlinear Anal. Med. Biol., 1, doi:10.15761/FGNAMB.1000109.

    • Search Google Scholar
    • Export Citation
  • Shen, B.-W., Atlas R. , Reale O. , Lin S.-J. , Chern J.-D. , Chang J. , Henze C. , and Li J.-L. , 2006: Hurricane forecasts with a global mesoscale-resolving model: Preliminary results with Hurricane Katrina (2005). Geophys. Res. Lett., 33, L13813, doi:10.1029/2006GL026143.

    • Search Google Scholar
    • Export Citation
  • Shen, B.-W., Tao W.-K. , and Wu M.-L. , 2010: African easterly waves in 30-day high resolution global simulations: A case study during the 2006 NAMMA period. Geophys. Res. Lett., 37, L18803, doi:10.1029/2010GL044355.

    • Search Google Scholar
    • Export Citation
  • Shen, B.-W., Tao W.-K. , Lin Y.-L. , and Laing A. , 2012: Genesis of twin tropical cyclones as revealed by a global mesoscale model: The role of mixed Rossby gravity waves. J. Geophys. Res., 117, D13114, doi:10.1029/2012JD017450.

    • Search Google Scholar
    • Export Citation
  • Shen, B.-W., DeMaria M. , Li J.-L. F. , and Cheung S. , 2013a: Genesis of Hurricane Sandy (2012) simulated with a global mesoscale model. Geophys. Res. Lett., 40, 49444950, doi:10.1002/grl.50934.

    • Search Google Scholar
    • Export Citation
  • Shen, B.-W., Nelson B. , Cheung S. , and Tao W.-K. , 2013b: Improving NASA’s multiscale modeling framework for tropical cyclone climate study. IEEE Comput. Sci. Eng., 15, 5667, doi:10.1109/MCSE.2012.90.

    • Search Google Scholar
    • Export Citation
  • Shen, B.-W., Cheung S. , Li J.-L. F. , and Wu Y.-L. , and Shen S. S. , 2016: Multiscale processes of Hurricane Sandy (2012) as revealed by the parallel ensemble empirical mode decomposition and advanced visualization technology. Adv. Data Sci. Adapt. Anal., in press.

  • Thorncroft, C. D., and Hoskins B. J. , 1994: An idealized study of African easterly waves. II: A nonlinear view. Quart. J. Roy. Meteor. Soc., 120, 9831015, doi:10.1002/qj.49712051810.

    • Search Google Scholar
    • Export Citation
  • Thorncroft, C. D., and Rowell D. P. , 1998: Interannual variability of African wave activity in a general circulation model. Int. J. Climatol., 18, 13051323, doi:10.1002/(SICI)1097-0088(1998100)18:12<1305::AID-JOC281>3.0.CO;2-N.

    • Search Google Scholar
    • Export Citation
  • Thorncroft, C. D., and Hodges K. , 2001: African easterly wave variability and its relationship to Atlantic tropical cyclone activity. J. Climate, 14, 11661179, doi:10.1175/1520-0442(2001)014<1166:AEWVAI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Torrence, C., and Compo G. P. , 1998: A practical guide to wavelet analysis. Bull. Amer. Meteor. Soc., 79, 6178, doi:10.1175/1520-0477(1998)079<0061:APGTWA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wang, G., Chen X.-Y. , Qiao F.-L. , Wu Z. , and Huang N. E. , 2010: On intrinsic mode function. Adv. Adapt. Data Anal., 2, 277293, doi:10.1142/S1793536910000549.

    • Search Google Scholar
    • Export Citation
  • Wang, T., Zhang M. , Yu Q. , and Zhang H. , 2012: Comparing the applications of EMD and EEMD on time–frequency analysis of seismic signal. J. Appl. Geophys., 83, 2934, doi:10.1016/j.jappgeo.2012.05.002.

    • Search Google Scholar
    • Export Citation
  • Wu, Z. H., and Huang N. E. , 2009: Ensemble empirical mode decomposition: A noise-assisted data analysis method. Adv. Adapt. Data Anal., 1, 141, doi:10.1142/S1793536909000047.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 7 7 7
PDF Downloads 3 3 3

An Evaluation of the Parallel Ensemble Empirical Mode Decomposition Method in Revealing the Role of Downscaling Processes Associated with African Easterly Waves in Tropical Cyclone Genesis

View More View Less
  • 1 Earth System Science Center, University of Alabama in Huntsville, Huntsville, Alabama
  • | 2 Department of Mathematics and Statistics, Center for Climate and Sustainability Studies, and Computational Science Research Center, San Diego State University, San Diego, California
Restricted access

Abstract

In this study the parallel ensemble empirical mode decomposition (PEEMD) is applied for an analysis of 10-yr (2004–13) ERA-Interim global reanalysis data in order to explore the role of downscaling processes associated with African easterly waves (AEWs) in tropical cyclone (TC) genesis. The focus of the study was aimed at understanding the downscaling process in multiscale flows during storm intensification. To represent the various length scales of atmospheric systems, intrinsic mode functions (IMFs) were extracted from the reanalysis data using the PEEMD. It was found that the nonoscillatory trend mode can be used to represent large-scale environmental flow and that the third oscillatory mode (IMF3) can be used to represent AEW/TC scale systems. The results 1) identified 42 developing cases from 272 AEWs, where 25 of them eventually developed into hurricanes; 2) indicated that the maximum for horizontal shear largely occurs over the ocean for the IMF3 and over land near the coast for the trend mode for developing cases, suggesting shear transfer between the trend mode and the IMF3; 3) displayed opposite wind shear tendencies for the trend mode and the IMF3 during storm intensification, signifying that the downscaling process was active in 13 hurricane cases along their tracks; and 4) showed that among the 42 developing cases, only 13 of the 25 hurricanes were found to have significant downscaling transfer features, so other processes such as upscaling processes may play an important role in the other developing cases, especially for the remaining 12 hurricane cases. In a future study, the authors intend to investigate the upscaling process between the convection scale and AEWs/TCs, which requires data at a finer grid resolution.

Corresponding author address: Dr. Bo-Wen Shen, Department of Mathematics and Statistics, San Diego State University, 5500 Campanile Drive, San Diego, CA 92182-7720. E-mail: bshen@mail.sdsu.edu; wuy@nsstc.uah.edu

Abstract

In this study the parallel ensemble empirical mode decomposition (PEEMD) is applied for an analysis of 10-yr (2004–13) ERA-Interim global reanalysis data in order to explore the role of downscaling processes associated with African easterly waves (AEWs) in tropical cyclone (TC) genesis. The focus of the study was aimed at understanding the downscaling process in multiscale flows during storm intensification. To represent the various length scales of atmospheric systems, intrinsic mode functions (IMFs) were extracted from the reanalysis data using the PEEMD. It was found that the nonoscillatory trend mode can be used to represent large-scale environmental flow and that the third oscillatory mode (IMF3) can be used to represent AEW/TC scale systems. The results 1) identified 42 developing cases from 272 AEWs, where 25 of them eventually developed into hurricanes; 2) indicated that the maximum for horizontal shear largely occurs over the ocean for the IMF3 and over land near the coast for the trend mode for developing cases, suggesting shear transfer between the trend mode and the IMF3; 3) displayed opposite wind shear tendencies for the trend mode and the IMF3 during storm intensification, signifying that the downscaling process was active in 13 hurricane cases along their tracks; and 4) showed that among the 42 developing cases, only 13 of the 25 hurricanes were found to have significant downscaling transfer features, so other processes such as upscaling processes may play an important role in the other developing cases, especially for the remaining 12 hurricane cases. In a future study, the authors intend to investigate the upscaling process between the convection scale and AEWs/TCs, which requires data at a finer grid resolution.

Corresponding author address: Dr. Bo-Wen Shen, Department of Mathematics and Statistics, San Diego State University, 5500 Campanile Drive, San Diego, CA 92182-7720. E-mail: bshen@mail.sdsu.edu; wuy@nsstc.uah.edu
Save