• Abdalla, S., Isaksen L. , Janssen P. A. E. M. , and Wedi N. , 2013: Effective spectral resolution of ECMWF atmospheric forecast models. ECMWF Newsletter, No. 137, ECMWF, Reading, United Kingdom, 19–22.

  • Alexander, P., de la Torre A. , Llamedo P. , and Hierro R. , 2014: Precision estimation in temperature and refractivity profiles retrieved by GPS radio occultations. J. Geophys. Res. Atmos., 119, 86248638, doi:10.1002/2013JD021016.

    • Search Google Scholar
    • Export Citation
  • Andersson, E., and Masutani M. , 2010: Collaboration on observing system simulation experiments (joint OSSE). ECMWF Newsletter, No. 123, ECMWF, Reading, United Kingdom, 14–16.

  • Aparicio, J. M., and Laroche S. , 2015: Estimation of the added value of the absolute calibration of GPS radio occultation data for numerical weather prediction. Mon. Wea. Rev., 143, 12591274, doi:10.1175/MWR-D-14-00153.1.

    • Search Google Scholar
    • Export Citation
  • Atlas, R., 1982: The growth of prognostic differences between GLAS model forecasts from SAT and NOSAT initial conditions. Mon. Wea. Rev., 110, 877882, doi:10.1175/1520-0493(1982)110<0877:TGOPDB>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Atlas, R., 1997: Atmospheric observations and experiments to assess their usefulness in data assimilation. J. Meteor. Soc. Japan, 75, 111130.

    • Search Google Scholar
    • Export Citation
  • Atlas, R., and Emmitt G. D. , 2008: Review of observing system simulation experiments to evaluate the potential impact of lidar winds on numerical weather prediction. 24th International Laser Radar Conference 2008 (ILRC 24), Vol. 2, International Coordination Group on Laser Atmospheric Studies, 726729.

  • Atlas, R., and Pagano T. S. , 2014: Observing system simulation experiments to assess the potential impact of proposed satellite instruments on hurricane prediction. Imaging Spectrometry XIX, P. Mouroulis and T. S. Pagano, Eds., International Society for Optical Engineering (SPIE Proceedings, Vol. 9222), 922202, doi:10.1117/12.2063648.

  • Atlas, R., Halem M. , and Ghil M. , 1982: The effect of model resolution and satellite sounding data on GLAS model forecasts. Mon. Wea. Rev., 110, 662682, doi:10.1175/1520-0493(1982)110<0662:TEOMRA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Atlas, R., Kalnay E. , Baker W. E. , Susskind J. , Reuter D. , and Halem M. , 1985a: Simulation studies of the impact of future observing systems on weather prediction. Preprints, Seventh Conf. on Numerical Weather Prediction, Montreal, QC, Canada, Amer. Meteor. Soc., 145151.

  • Atlas, R., Kalnay E. , and Halem M. , 1985b: Impact of satellite temperature soundings and wind data on numerical weather prediction. Opt. Eng., 24, 341346, doi:10.1117/12.7973481.

    • Search Google Scholar
    • Export Citation
  • Atlas, R., and Coauthors, 2001: The effects of marine winds from scatterometer data on weather analysis and forecasting. Bull. Amer. Meteor. Soc., 82, 19651990, doi:10.1175/1520-0477(2001)082<1965:TEOMWF>2.3.CO;2.

    • Search Google Scholar
    • Export Citation
  • Atlas, R., Bucci L. , Annane B. , Hoffman R. , and Murillo S. , 2015a: Observing system simulation experiments to assess the potential impact of new observing systems on hurricane forecasting. Marine Technol. Soc. J., 49, 140148, doi:10.4031/MTSJ.49.6.3.

    • Search Google Scholar
    • Export Citation
  • Atlas, R., and Coauthors, 2015b: Observing system simulation experiments (OSSEs) to evaluate the potential impact of an optical autocovariance wind lidar (OAWL) on numerical weather prediction. J. Atmos. Oceanic Technol., 32, 15931613, doi:10.1175/JTECH-D-15-0038.1.

    • Search Google Scholar
    • Export Citation
  • Bormann, N., Hernandez-Carrascal A. , Borde R. , Lutz H.-J. , Otkin J. A. , and Wanzong S. , 2014: Atmospheric motion vectors from model simulations. Part I: Methods and characterization as single-level estimates of wind. J. Appl. Meteor. Climatol., 53, 4764, doi:10.1175/JAMC-D-12-0336.1.

    • Search Google Scholar
    • Export Citation
  • Boukabara, S. A., and Coauthors, 2016: S4: An O2R/R2O infrastructure for optimizing satellite data utilization in NOAA numerical modeling systems: A step toward bridging the gap between research and operations. Bull. Amer. Meteor. Soc., doi:10.1175/BAMS-D-14-00188.1, in press.

    • Search Google Scholar
    • Export Citation
  • Chen, Y., Weng F. , Han Y. , and Liu Q. , 2008: Validation of the Community Radiative Transfer Model by using CloudSat data. J. Geophys. Res., 113, D00A03, doi:10.1029/2007JD009561.

    • Search Google Scholar
    • Export Citation
  • Cucurull, L., Derber J. C. , and Purser R. J. , 2013: A bending angle forward operator for global positioning system radio occultation measurements. J. Geophys. Res. Atmos., 118, 1428, doi:10.1029/2012JD017782.

    • Search Google Scholar
    • Export Citation
  • da Silva, A. M., Putman W. , and Nattala J. , 2014: File specification for the 7-km GEOS-5 nature run, Ganymed release (non-hydrostatic 7-km global mesoscale simulation). GMAO Office Note 6 (version 1.0), NASA, 176 pp. [Available online at http://gmao.gsfc.nasa.gov/pubs/docs/da%20Silva762.pdf.]

  • Ding, S., Yang P. , Weng F. , Liu Q. , Han Y. , van Delst P. , Li J. , and Baum B. , 2011: Validation of the community radiative transfer model. J. Quant. Spectrosc. Radiat. Transfer, 112, 10501064, doi:10.1016/j.jqsrt.2010.11.009.

    • Search Google Scholar
    • Export Citation
  • Donlon, C. J., Martin M. , Stark J. , Roberts-Jones J. , Fiedler E. , and Wimmer W. , 2012: The Operational Sea Surface Temperature and Sea Ice Analysis (OSTIA) system. Remote Sens. Environ., 116, 140158, doi:10.1016/j.rse.2010.10.017.

    • Search Google Scholar
    • Export Citation
  • Ek, M. B., Mitchell K. E. , Lin Y. , Rogers E. , Grunmann P. , Koren V. , Gayno G. , and Tarpley J. D. , 2003: Implementation of Noah land-surface model advances in the NCEP operational mesoscale Eta model. J. Geophys. Res., 108, 8851, doi:10.1029/2002JD003296.

    • Search Google Scholar
    • Export Citation
  • Errico, R. M., Yang R. , Privé N. C. , Tai K.-S. , Todling R. , Sienkiewicz M. E. , and Guo J. , 2013: Development and validation of observing-system simulation experiments at NASA’s Global Modeling and Assimilation Office. Quart. J. Roy. Meteor. Soc., 139, 11621178, doi:10.1002/qj.2027.

    • Search Google Scholar
    • Export Citation
  • Gelaro, R., and Coauthors, 2015: Evaluation of the 7-km GEOS-5 nature run. Technical Report Series on Global Modeling and Data Assimilation, R. D. Koster, Ed., Vol. 36, NASA Goddard Space Flight Center, NASA/TM-2014-104606/Vol.36, 285 pp. [Available online at http://gmao.gsfc.nasa.gov/pubs/docs/Gelaro736.pdf.]

  • Hamill, T. M., Whitaker J. S. , Fiorino M. , and Benjamin S. G. , 2011: Global ensemble predictions of 2009’s tropical cyclones initialized with an ensemble Kalman filter. Mon. Wea. Rev., 139, 668688, doi:10.1175/2010MWR3456.1.

    • Search Google Scholar
    • Export Citation
  • Hoffman, R. N., and Atlas R. , 2016: Future observing system simulation experiments. Bull. Amer. Meteor. Soc., 97, 16011616, doi:10.1175/BAMS-D-15-00200.1.

    • Search Google Scholar
    • Export Citation
  • Hu, M., Shao H. , Stark D. , Newman K. , and Zhou C. , Eds., 2014a: GSI: Gridpoint statistical interpolation community version 3.3; Advanced user’s guide, V3.3.0.1, Developmental Testbed Center, National Center for Atmospheric Research, 123 pp. [Available online at http://www.dtcenter.org/com-GSI/users/docs/users_guide/AdvancedGSIUserGuide_v3.3.0.1.pdf.]

  • Hu, M., Shao H. , Stark D. , Newman K. , and Zhou C. , Eds., 2014b: GSI: Gridpoint statistical interpolation community version 3.3; User’s guide, V3.3, Developmental Testbed Center, National Center for Atmospheric Research, 108 pp. [Available online at http://www.dtcenter.org/com-GSI/users/docs/users_guide/GSIUserGuide_v3.3.pdf.]

  • Keyser, D., 2013: PREPBUFR processing at NCEP. NCEP. [Available online at http://www.emc.ncep.noaa.gov/mmb/data_processing/prepbufr.doc/document.htm.]

  • Kleist, D. T., 2011: Assimilation of tropical cyclone advisory minimum sea level pressure in the NCEP Global Data Assimilation System. Wea. Forecasting, 26, 10851091, doi:10.1175/WAF-D-11-00045.1.

    • Search Google Scholar
    • Export Citation
  • Kleist, D. T., and Ide K. , 2015a: An OSSE-based evaluation of hybrid variational–ensemble data assimilation for the NCEP GFS. Part I: System description and 3D-hybrid results. Mon. Wea. Rev., 143, 433451, doi:10.1175/MWR-D-13-00351.1.

    • Search Google Scholar
    • Export Citation
  • Kleist, D. T., and Ide K. , 2015b: An OSSE-based evaluation of hybrid variational–ensemble data assimilation for the NCEP GFS. Part II: 4DEnVar and hybrid variants. Mon. Wea. Rev., 143, 452470, doi:10.1175/MWR-D-13-00350.1.

    • Search Google Scholar
    • Export Citation
  • Kleist, D. T., Parrish D. F. , Derber J. C. , Treadon R. , Errico R. M. , and Yang R. , 2009a: Improving incremental balance in the GSI 3DVAR analysis system. Mon. Wea. Rev., 137, 10461060, doi:10.1175/2008MWR2623.1.

    • Search Google Scholar
    • Export Citation
  • Kleist, D. T., Parrish D. F. , Derber J. C. , Treadon R. , Wu W.-S. , and Lord S. , 2009b: Introduction of the GSI into the NCEP Global Data Assimilation System. Wea. Forecasting, 24, 16911705, doi:10.1175/2009WAF2222201.1.

    • Search Google Scholar
    • Export Citation
  • Lambrigtsen, B. H., 2015: Progress in developing a geostationary microwave sounder. 11th Annual Symp. on New Generation Operational Environmental Satellite Systems, Phoenix, AZ, Amer. Meteor. Soc., J19.3. [Available online at https://ams.confex.com/ams/95Annual/webprogram/Paper267078.html.]

  • Landsea, C. W., and Franklin J. L. , 2013: Atlantic hurricane database uncertainty and presentation of a new database format. Mon. Wea. Rev., 141, 35763592, doi:10.1175/MWR-D-12-00254.1.

    • Search Google Scholar
    • Export Citation
  • Laprise, R., 1992: The resolution of global spectral models. Bull. Amer. Meteor. Soc., 73, 14531454.

  • Li, Z., Li J. , Schmit T. J. , Wang P. , Lim A. , Atlas R. , and Hoffman R. N. , 2015: Geostationary advanced infrared sounder radiance simulation and validation for Sandy Supplemental OSSE. 19th Conf. on Integrated Observing and Assimilation Systems for the Atmosphere, Oceans, and Land Surface (IOAS-AOLS), Phoenix, AZ, Amer. Meteor. Soc., 2.4. [Available online at https://ams.confex.com/ams/95Annual/webprogram/Paper266492.html.]

  • Liang, X.-M., Ignatov A. , and Kihai Y. , 2009: Implementation of the Community Radiative Transfer Model in advanced clear-sky processor for oceans and validation against nighttime AVHRR radiances. J. Geophys. Res., 114, D06112, doi:10.1029/2008JD010960.

    • Search Google Scholar
    • Export Citation
  • Masutani, M., and Coauthors, 2007: Progress in observing systems simulation experiments (a new nature run and international collaboration). 22nd Conf. on Weather Analysis and Forecasting/18th Conf. on Numerical Weather Prediction, Park City, UT, Amer. Meteor. Soc., 12B.5. [Available online at https://ams.confex.com/ams/22WAF18NWP/webprogram/Paper124080.html.]

  • NOAA, 2015: Running global model parallel experiments. GFS: Global Forecast System, Version 6.0, NOAA/NWS/NCEP/EMC/Global Climate and Weather Modeling Branch, NOAA/NWS/NCEP/EMC/Global Climate and Weather Modeling Branch, 41 pp. [Available online at http://www.emc.ncep.noaa.gov/GFS/docs/running_global_model_parallel_experiments_v6.0.pdf.]

  • NWS, 2014: Corrected: Global Forecast Systems (GFS) update: Effective January 14, 2015. Tech. Implementation Notice TIN14–46, National Weather Service. [Available online at http://www.nws.noaa.gov/os/notification/tin14-46gfs_cca.htm.]

  • Putman, W., da Silva A. M. , Ott L. E. , and Darmenov A. , 2014: Model configuration for the 7-km GEOS-5 nature run, Ganymed release (non-hydrostatic 7 km global mesoscale simulation). GMAO Office Note 5 (version 1.0), NASA, 18 pp. [Available online at http://gmao.gsfc.nasa.gov/pubs/docs/Putman727.pdf.]

  • Putman, W., Darmenov A. , da Silva A. , Gelaro R. , Molod A. , Ott L. , and Suarez M. J. , 2015: A 7-km non-hydrostatic global mesoscale simulation for OSSEs with the Goddard Earth Observing System Model (GEOS-5). 19th Conf. on Integrated Observing and Assimilation Systems for the Atmosphere, Oceans, and Land Surface (IOAS-AOLS), Phoenix, AZ, Amer. Meteor. Soc., 3.1. [Available online at https://ams.confex.com/ams/95Annual/webprogram/Paper260701.html.]

  • Rabier, F., Thépaut J.-N. , and Courtier P. , 1998: Extended assimilation and forecast experiments with a four-dimensional variational assimilation system. Quart. J. Roy. Meteor. Soc., 124, 18611887, doi:10.1002/qj.49712455005.

    • Search Google Scholar
    • Export Citation
  • Schmit, T. J., Li J. , Ackerman S. A. , and Gurka J. J. , 2009: High-spectral- and high-temporal-resolution infrared measurements from geostationary orbit. J. Atmos. Oceanic Technol., 26, 22732292, doi:10.1175/2009JTECHA1248.1.

    • Search Google Scholar
    • Export Citation
  • Torn, R. D., and Snyder C. , 2012: Uncertainty of tropical cyclone best-track information. Wea. Forecasting, 27, 715729, doi:10.1175/WAF-D-11-00085.1.

    • Search Google Scholar
    • Export Citation
  • Wang, X., 2010: Incorporating ensemble covariance in the gridpoint statistical interpolation variational minimization: A mathematical framework. Mon. Wea. Rev., 138, 29902995, doi:10.1175/2010MWR3245.1.

    • Search Google Scholar
    • Export Citation
  • Wang, X., and Lei T. , 2014: GSI-based four-dimensional ensemble–variational (4DEnsVar) data assimilation: Formulation and single-resolution experiments with real data for NCEP Global Forecast System. Mon. Wea. Rev., 142, 33033325, doi:10.1175/MWR-D-13-00303.1.

    • Search Google Scholar
    • Export Citation
  • Wang, X., Parrish D. , Kleist D. , and Whitaker J. , 2013: GSI 3DVar-based ensemble–variational hybrid data assimilation for NCEP Global Forecast System: Single-resolution experiments. Mon. Wea. Rev., 141, 40984117, doi:10.1175/MWR-D-12-00141.1.

    • Search Google Scholar
    • Export Citation
  • Xu, D., Kumar K. , and Boukabara S. A. , 2015: Development of independent assessment tool at NOAA/NESDIS/STAR/JCSDA. 20th Conf. on Satellite Meteorology and Oceanography, Phoenix, AZ, Amer. Meteor. Soc., 197. [Available online at https://ams.confex.com/ams/95Annual/webprogram/Paper267442.html.]

  • Zhu, Y., Derber J. , Collard A. , Dee D. , Treadon R. , Gayno G. , and Jung J. A. , 2014: Enhanced radiance bias correction in the National Centers for Environmental Prediction’s Gridpoint Statistical Interpolation data assimilation system. Quart. J. Roy. Meteor. Soc., 140, 14791492, doi:10.1002/qj.2233.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 17 17 17
PDF Downloads 12 12 12

Community Global Observing System Simulation Experiment (OSSE) Package (CGOP): Description and Usage

View More View Less
  • 1 NOAA/NESDIS/Center for Satellite Applications and Research (STAR), College Park, Maryland
  • | 2 Joint Center for Satellite Data Assimilation, College Park, Maryland
  • | 3 Cooperative Institute for Climate and Satellites, University of Maryland, College Park, College Park, Maryland
  • | 4 NOAA/Atlantic Oceanographic and Meteorological Laboratory, Miami, Florida
  • | 5 Cooperative Institute for Marine and Atmospheric Studies, University of Miami, Miami, Florida
  • | 6 NOAA/Earth System Research Laboratory, Global Systems Division, Boulder, Colorado
  • | 7 Riverside Technology, Inc., Silver Spring, Maryland
  • | 8 Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, Colorado
  • | 9 Cooperative Institute for Meteorological Satellite Studies, University of Wisconsin–Madison, Madison, Wisconsin
  • | 10 NOAA/National Centers for Environmental Prediction, College Park, Maryland
Restricted access

Abstract

A modular extensible framework for conducting observing system simulation experiments (OSSEs) has been developed with the goals of 1) supporting decision-makers with quantitative assessments of proposed observing systems investments, 2) supporting readiness for new sensors, 3) enhancing collaboration across the community by making the most up-to-date OSSE components accessible, and 4) advancing the theory and practical application of OSSEs. This first implementation, the Community Global OSSE Package (CGOP), is for short- to medium-range global numerical weather prediction applications. The CGOP is based on a new mesoscale global nature run produced by NASA using the 7-km cubed sphere version of the Goddard Earth Observing System, version 5 (GEOS-5), atmospheric general circulation model and the January 2015 operational version of the NOAA global data assimilation (DA) system. CGOP includes procedures to simulate the full suite of observing systems used operationally in the global DA system, including conventional in situ, satellite-based radiance, and radio occultation observations. The methodology of adding a new proposed observation type is documented and illustrated with examples of current interest. The CGOP is designed to evolve, both to improve its realism and to keep pace with the advance of operational systems.

Current affiliation: NOAA Office of the Assistant Secretary of Commerce for Environmental Observation and Prediction, Washington, D.C.

Corresponding author address: Dr. Sid-Ahmed Boukabara, NOAA/NESDIS, 5830 University Research Court, Suite 2617, College Park, MD 207400. E-mail: sid.boukabara@noaa.gov

Abstract

A modular extensible framework for conducting observing system simulation experiments (OSSEs) has been developed with the goals of 1) supporting decision-makers with quantitative assessments of proposed observing systems investments, 2) supporting readiness for new sensors, 3) enhancing collaboration across the community by making the most up-to-date OSSE components accessible, and 4) advancing the theory and practical application of OSSEs. This first implementation, the Community Global OSSE Package (CGOP), is for short- to medium-range global numerical weather prediction applications. The CGOP is based on a new mesoscale global nature run produced by NASA using the 7-km cubed sphere version of the Goddard Earth Observing System, version 5 (GEOS-5), atmospheric general circulation model and the January 2015 operational version of the NOAA global data assimilation (DA) system. CGOP includes procedures to simulate the full suite of observing systems used operationally in the global DA system, including conventional in situ, satellite-based radiance, and radio occultation observations. The methodology of adding a new proposed observation type is documented and illustrated with examples of current interest. The CGOP is designed to evolve, both to improve its realism and to keep pace with the advance of operational systems.

Current affiliation: NOAA Office of the Assistant Secretary of Commerce for Environmental Observation and Prediction, Washington, D.C.

Corresponding author address: Dr. Sid-Ahmed Boukabara, NOAA/NESDIS, 5830 University Research Court, Suite 2617, College Park, MD 207400. E-mail: sid.boukabara@noaa.gov
Save