• Austin, R. T., and Stephens G. L. , 2001: Retrieval of stratus cloud microphysical parameters using millimeter-wave radar and visible optical depth in preparation for CloudSat: 1. Algorithm formulation. J. Geophys. Res., 106, 28 23328 242, doi:10.1029/2000JD000293.

    • Search Google Scholar
    • Export Citation
  • Benner, T. C., and Curry J. A. , 1998: Characteristics of small tropical cumulus clouds and their impact on the environment. J. Geophys. Res., 103, 28 75328 767, doi:10.1029/98JD02579.

    • Search Google Scholar
    • Export Citation
  • Bohren, C. F., and Huffman D. R. , 1983: Absorption and Scattering of Light by Small Particles. Wiley, 530 pp.

  • Bony, S., and Dufresne J.-L. , 2005: Marine boundary layer clouds at the heart of tropical cloud feedback uncertainties in climate models. Geophys. Res. Lett., 32, L20806, doi:10.1029/2005GL023851.

    • Search Google Scholar
    • Export Citation
  • Cahalan, R. F., and Joseph J. H. , 1989: Fractal statistics of cloud fields. Mon. Wea. Rev., 117, 261272, doi:10.1175/1520-0493(1989)117<0261:FSOCF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Cahalan, R. F., Ridgway W. , Wiscombe W. J. , Bell T. L. , and Snider J. B. , 1994: The albedo of fractal stratocumulus clouds. J. Atmos. Sci., 51, 24342455, doi:10.1175/1520-0469(1994)051<2434:TAOFSC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Christensen, M. W., Stephens G. L. , and Lebsock M. D. , 2013: Exposing biases in retrieved low cloud properties from CloudSat: A guide for evaluating observations and climate data. J. Geophys. Res. Atmos., 118, 12 12012 131, doi:10.1002/2013JD020224.

    • Search Google Scholar
    • Export Citation
  • Dong, X., and Mace G. G. , 2003: Profiles of low-level stratus cloud microphysics deduced from ground-based measurements. J. Atmos. Oceanic Technol., 20, 4253, doi:10.1175/1520-0426(2003)020<0042:POLLSC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Freilich, M. H., and Vanhoff B. A. , 2003: The relationship between winds, surface roughness, and radar backscatter at low incidence angles from TRMM precipitation radar measurements. J. Atmos. Oceanic Technol., 20, 549562, doi:10.1175/1520-0426(2003)20<549:TRBWSR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Greenwald, T. J., 2009: A 2 year comparison of AMSR-E and MODIS cloud liquid water path observations. Geophys. Res. Lett., 36, L20805, doi:10.1029/2009GL040394.

    • Search Google Scholar
    • Export Citation
  • Haynes, J. M., L’Ecuyer T. S. , Stephens G. L. , Miller S. D. , Mitrescu C. , Wood N. B. , and Tanelli S. , 2009: Rainfall retrieval over the ocean with spaceborne W-band radar. J. Geophys. Res., 114, D00A22, doi:10.1029/2008JD009973.

    • Search Google Scholar
    • Export Citation
  • Hogan, R. J., and Battaglia A. , 2008: Fast lidar and radar multiple-scattering models. Part II: Wide-angle scattering using the time-dependent two-stream approximation. J. Atmos. Sci., 65, 36363651, doi:10.1175/2008JAS2643.1.

    • Search Google Scholar
    • Export Citation
  • Illingworth, A. J., and Coauthors, 2015: The EarthCARE satellite: The next step forward in global measurements of clouds, aerosols, precipitation and radiation. Bull. Amer. Meteor. Soc., 96, 13111332, doi:10.1175/BAMS-D-12-00227.1.

    • Search Google Scholar
    • Export Citation
  • Junge, C., 1955: The size distribution and aging of natural aerosols as determined from electrical and optical data on the atmosphere. J. Meteor., 12, 1325, doi:10.1175/1520-0469(1955)012<0013:TSDAAO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kawanishi, T., and Coauthors, 2003: The Advanced Microwave Scanning Radiometer for the Earth Observing System (AMSR-E), NASDA’s contribution to the EOS for global energy and water cycle studies. IEEE Trans. Geosci. Remote Sens., 41, 184194, doi:10.1109/TGRS.2002.808331.

    • Search Google Scholar
    • Export Citation
  • Klein, L., and Swift C. T. , 1977: An improved model for the dielectric constant of sea water at microwave frequencies. IEEE Trans. Antennas Propag., 25, 104111, doi:10.1109/TAP.1977.1141539.

    • Search Google Scholar
    • Export Citation
  • Kummerow, C., 1993: On the accuracy of the Eddington approximation for radiative transfer in the microwave frequencies. J. Geophys. Res., 98, 27572765, doi:10.1029/92JD02472.

    • Search Google Scholar
    • Export Citation
  • Lebsock, M. D., and L’Ecuyer T. S. , 2011: The retrieval of warm rain from CloudSat. J. Geophys. Res., 116, D20209, doi:10.1029/2011JD016076.

    • Search Google Scholar
    • Export Citation
  • Lebsock, M. D., and Su H. , 2014: Application of active spaceborne remote sensing for understanding biases between passive cloud water path retrievals: Understanding cloud water bias. J. Geophys. Res. Atmos., 119, 89628979, doi:10.1002/2014JD021568.

    • Search Google Scholar
    • Export Citation
  • Lebsock, M. D., L’Ecuyer T. S. , and Stephens G. L. , 2011: Detecting the ratio of rain and cloud water in low-latitude shallow marine clouds. J. Appl. Meteor. Climatol., 50, 419432, doi:10.1175/2010JAMC2494.1.

    • Search Google Scholar
    • Export Citation
  • Li, L., Heymsfield G. M. , Tian L. , and Racette P. E. , 2005: Measurements of ocean surface backscattering using an airborne 94-GHz cloud radar—Implication for calibration of airborne and spaceborne W-band radars. J. Atmos. Oceanic Technol., 22, 10331045, doi:10.1175/JTECH1722.1.

    • Search Google Scholar
    • Export Citation
  • Liebe, H. J., Hufford G. A. , and Cotton M. G. , 1993: Propagation modeling of moist air and suspended water/ice particles at frequencies below 1000 GHz. Atmospheric Propagation Effects through Natural and Man-Made Obscurants for Visible to MM-Wave Radiation, AGARD Conference Proceedings 542, AGARD-CP-542, North Atlantic Treaty Organization, 3-1–3-11.

  • Matheou, G., and Chung D. , 2014: Large-eddy simulation of stratified turbulence. Part II: Application of the stretched-vortex model to the atmospheric boundary layer. J. Atmos. Sci., 71, 44394460, doi:10.1175/JAS-D-13-0306.1.

    • Search Google Scholar
    • Export Citation
  • Matheou, G., Chung D. , Nuijens L. , Stevens B. , and Teixeira J. , 2011: On the fidelity of large-eddy simulation of shallow precipitating cumulus convection. Mon. Wea. Rev., 139, 29182939, doi:10.1175/2011MWR3599.1.

    • Search Google Scholar
    • Export Citation
  • National Research Council, 2007: Earth Science and Applications from Space: National Imperatives for the Next Decade and Beyond. National Academies Press, 454 pp., doi:10.17226/11820.

  • Norris, J. R., 1998: Low cloud type over the ocean from surface observations. Part II: Geographical and seasonal variations. J. Climate, 11, 383403, doi:10.1175/1520-0442(1998)011<0383:LCTOTO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Rauber, R. M., and Coauthors, 2007: Rain in Shallow Cumulus over the Ocean: The RICO campaign. Bull. Amer. Meteor. Soc., 88, 19121928, doi:10.1175/BAMS-88-12-1912.

    • Search Google Scholar
    • Export Citation
  • Ray, P. S., 1972: Broadband complex refractive indices of ice and water. Appl. Opt., 11, 18361844, doi:10.1364/AO.11.001836.

  • Rosenkranz, P. W., 1998: Water vapor microwave continuum absorption: A comparison of measurements and models. Radio Sci., 33, 919928, doi:10.1029/98RS01182.

    • Search Google Scholar
    • Export Citation
  • Seethala, C., and Horváth Á. , 2010: Global assessment of AMSR-E and MODIS cloud liquid water path retrievals in warm oceanic clouds. J. Geophys. Res., 115, D13202, doi:10.1029/2009JD012662.

    • Search Google Scholar
    • Export Citation
  • Stephens, G. L., and Coauthors, 2008: CloudSat mission: Performance and early science after the first year of operation. J. Geophys. Res., 113, D00A18, doi:10.1029/2008JD009982.

    • Search Google Scholar
    • Export Citation
  • Suzuki, K., Nakajima T. , Nakajima T. Y. , and Khain A. P. , 2010: A study of microphysical mechanisms for correlation patterns between droplet radius and optical thickness of warm clouds with a spectral bin microphysics cloud model. J. Atmos. Sci., 67, 11261141, doi:10.1175/2009JAS3283.1.

    • Search Google Scholar
    • Export Citation
  • Tanelli, S., Durden S. L. , Im E. , Pak K. S. , Reinke D. G. , Partain P. , Haynes J. M. , and Marchand R. T. , 2008: CloudSat’s Cloud Profiling Radar after two years in orbit: Performance, calibration, and processing. IEEE Trans. Geosci. Remote Sens., 46, 35603573, doi:10.1109/TGRS.2008.2002030.

    • Search Google Scholar
    • Export Citation
  • Tiedtke, M., 1989: A comprehensive mass flux scheme for cumulus parameterization in large-scale models. Mon. Wea. Rev., 117, 17791800, doi:10.1175/1520-0493(1989)117<1779:ACMFSF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • vanZanten, M. C., and Coauthors, 2011: Controls on precipitation and cloudiness in simulations of trade-wind cumulus as observed during RICO. J. Adv. Model. Earth Syst., 3, M06001, doi:10.1029/2011MS000056.

    • Search Google Scholar
    • Export Citation
  • Várnai, T., and Marshak A. , 2002: Observations of three-dimensional radiative effects that influence MODIS cloud optical thickness retrievals. J. Atmos. Sci., 59, 16071618, doi:10.1175/1520-0469(2002)059<1607:OOTDRE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wentz, F. J., 1997: A well-calibrated ocean algorithm for special sensor microwave / imager. J. Geophys. Res., 102, 87038718, doi:10.1029/96JC01751.

    • Search Google Scholar
    • Export Citation
  • Wood, R., and Field P. R. , 2011: The distribution of cloud horizontal sizes. J. Climate, 24, 48004816, doi:10.1175/2011JCLI4056.1.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 119 67 0
PDF Downloads 86 47 0

Uncertainty Characteristics of Total Water Path Retrievals in Shallow Cumulus Derived from Spaceborne Radar/Radiometer Integral Constraints

View More View Less
  • 1 Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California
  • | 2 Department of Earth and Planetary Science, University of Tokyo, Tokyo, Japan
Restricted access

Abstract

A precipitating marine cumulus cloud simulation is coupled to radiation propagation models to simulate active and passive microwave observations at 94 GHz. The simulations are used to examine the error characteristics of the total water path retrieved from the integral constraints of the passive microwave brightness temperature or the path-integrated attenuation (PIA) using a spatial interpolation technique. Three sources of bias are considered: 1) the misdetection of cloudy pixels as clear, 2) the systematic differences in the column water vapor between cloudy and clear skies, and 3) the nonuniform beamfilling effects on the observables. The first two sources result in biases on the order of 5–10 g m−2 of opposite signs that tend to cancel. The third source results in a bias that increases monotonically with the water path that approaches 50%. Nonuniform beamfilling is sensitive to footprint size. Random error results from both instrument measurement precision and the natural variability in the relationship between the water path and the observables. Random errors for the retrievals using the CloudSat PIA are estimated to be the larger of either 20 g m−2 or 30%. A radar/radiometer system with a measurement precision of 0.3 K or 0.05 dB could reduce this error to the larger of either 10 g m−2 or 30%. All error mechanisms reported here result from variability in either the spatial structure of the atmosphere or the hydrometeor drop size distribution. The results presented here are specific to the cloud simulation and in general the magnitude will vary globally.

Corresponding author address: Matthew Lebsock, Jet Propulsion Laboratory, M/S 233-300, 4800 Oak Grove Drive, Pasadena, CA 91109. E-mail: matthew.d.lebsock@jpl.nasa.gov

Abstract

A precipitating marine cumulus cloud simulation is coupled to radiation propagation models to simulate active and passive microwave observations at 94 GHz. The simulations are used to examine the error characteristics of the total water path retrieved from the integral constraints of the passive microwave brightness temperature or the path-integrated attenuation (PIA) using a spatial interpolation technique. Three sources of bias are considered: 1) the misdetection of cloudy pixels as clear, 2) the systematic differences in the column water vapor between cloudy and clear skies, and 3) the nonuniform beamfilling effects on the observables. The first two sources result in biases on the order of 5–10 g m−2 of opposite signs that tend to cancel. The third source results in a bias that increases monotonically with the water path that approaches 50%. Nonuniform beamfilling is sensitive to footprint size. Random error results from both instrument measurement precision and the natural variability in the relationship between the water path and the observables. Random errors for the retrievals using the CloudSat PIA are estimated to be the larger of either 20 g m−2 or 30%. A radar/radiometer system with a measurement precision of 0.3 K or 0.05 dB could reduce this error to the larger of either 10 g m−2 or 30%. All error mechanisms reported here result from variability in either the spatial structure of the atmosphere or the hydrometeor drop size distribution. The results presented here are specific to the cloud simulation and in general the magnitude will vary globally.

Corresponding author address: Matthew Lebsock, Jet Propulsion Laboratory, M/S 233-300, 4800 Oak Grove Drive, Pasadena, CA 91109. E-mail: matthew.d.lebsock@jpl.nasa.gov
Save