• Barclay, L., Ed., 2003: Propagation of Radiowaves. 2nd ed. Electromagnetic Wave Series, Vol. 502, Institution of Electrical Engineers, 480 pp.

    • Search Google Scholar
    • Export Citation
  • Bell, P. S., 1999: Shallow water bathymetry derived from an analysis of X-band marine radar images of waves. Coastal Eng., 37, 513527, doi:10.1016/S0378-3839(99)00041-1.

    • Search Google Scholar
    • Export Citation
  • Brooks, I., , and Rogers D. , 1997: Aircraft observations of boundary layer rolls off the coast of California. J. Atmos. Sci., 54, 18341849, doi:10.1175/1520-0469(1997)054<1834:AOOBLR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Brown, R. A., 1970: A secondary flow model for the planetary boundary layer. J. Atmos. Sci., 27, 742757, doi:10.1175/1520-0469(1970)027<0742:ASFMFT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Campana, J., , Terrill E. J. , , and de Paolo T. , 2016: The development of an inversion technique to extract vertical current profiles from X-band radar observations. J. Atmos. Oceanic Technol., doi:10.1175/JTECH-D-15-0145.1, in press.

    • Search Google Scholar
    • Export Citation
  • Chen, W., , Banner M. , , Walsh E. , , Jensen J. , , and Lee S. , 2001: The Southern Ocean Waves Experiment. Part II: Sea surface response to wind speed and wind stress variations. J. Phys. Oceanogr., 31, 174198, doi:10.1175/1520-0485(2001)031<0174:TSOWEP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • de Sousa, J., , McGuillivary P. , , Vicente J. , , Nunes Bento M. , , Morgado J. A. P. , , Madruga Matos M. , , Ayres Gomes Bencatel R. , , and Mónica de Oliveira P. , 2014: Unmanned aircraft systems for maritime operations. Handbook of Unmanned Aerial Vehicles, K. P. Valavanis and G. J. Vachtsevanos, Eds., Springer, 2787–2811, doi:10.1007/978-90-481-9707-1_75.

  • Dillon, T., , Moum J. , , Chereskin T. , , and Caldwell D. , 1989: Zonal momentum balance at the equator. J. Phys. Oceanogr., 19, 561570, doi:10.1175/1520-0485(1989)019<0561:ZMBATE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Doyle, J. D., , Hold T. R. , , and Flagg D. D. , Eds., 2016: Trident Warrior 2013. NRL Tech. Memo. PAO 16-1231-2460, 241 pp.

  • Edson, J. B., , Hinton A. A. , , Prada K. E. , , Hare J. E. , , and Fairall C. W. , 1998: Direct covariance flux estimates from mobile platforms at sea. J. Atmos. Oceanic Technol., 15, 547562, doi:10.1175/1520-0426(1998)015<0547:DCFEFM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Etling, D., , and Brown R. , 1993: Roll vortices in the planetary boundary layer: A review. Bound.-Layer Meteor., 65, 215248, doi:10.1007/BF00705527.

    • Search Google Scholar
    • Export Citation
  • Fairall, C., , Bradley E. , , Rogers D. , , Edson J. , , and Young G. , 1996: Bulk parameterization of air-sea fluxes for Tropical Ocean-Global Atmosphere Coupled-Ocean Atmosphere Response Experiment. J. Geophys. Res., 101, 37473764, doi:10.1029/95JC03205.

    • Search Google Scholar
    • Export Citation
  • Friehe, C. A., and Coauthors, 1991: Air-sea fluxes and surface layer turbulence around a sea surface temperature front. J. Geophys. Res., 96, 85938609, doi:10.1029/90JC02062.

    • Search Google Scholar
    • Export Citation
  • Gee, J., , Cande S. , , Kent D. , , Partner R. , , and Heckman K. , 2008: Mapping geomagnetic field variations with unmanned airborne vehicles. Eos, Trans. Amer. Geophys. Union, 89, 178179, doi:10.1029/2008EO190002.

    • Search Google Scholar
    • Export Citation
  • Gill, A., 1982: Atmosphere–Ocean Dynamics. Academic Press, 662 pp.

  • Gregg, M., , Peters H. , , Wesson J. , , Oakey N. , , and Shay T. , 1985: Intensive measurements of turbulence and shear in the equatorial undercurrent. Nature, 318, 140144, doi:10.1038/318140a0.

    • Search Google Scholar
    • Export Citation
  • Hein, P., , and Brown R. , 1988: Observations of longitudinal roll vortices during arctic cold air outbreaks over open water. Bound.-Layer Meteor., 45, 177199, doi:10.1007/BF00120822.

    • Search Google Scholar
    • Export Citation
  • Hessner, K., , Reichert K. , , Nieto Borge J. C. , , Stevens C. L. , , and Smith M. J. , 2014: High-resolution X-band radar measurements of currents, bathymetry and sea state in highly inhomogeneous coastal areas. Ocean Dyn., 64, 989998, doi:10.1007/s10236-014-0724-7.

    • Search Google Scholar
    • Export Citation
  • Jackson, C., 2007: Internal wave detection using the Moderate Resolution Imaging Spectroradiometer (MODIS). J. Geophys. Res., 112, C11012, doi:10.1029/2007JC004220.

    • Search Google Scholar
    • Export Citation
  • Jones, I. S. F., , and Toba Y. , 2001: Wind Stress over the Ocean. Cambridge University Press, 326 pp.

  • Kelly, R. D., 1984: Horizontal roll and boundary-layer interrelationships observed over Lake Michigan. J. Atmos. Sci., 41, 18161826, doi:10.1175/1520-0469(1984)041<1816:HRABLI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kundu, P. K., , Cohen I. M. , , and Dowling D. H. , 2012: Fluid Mechanics. 4th ed. Elsevier Science, 904 pp.

  • Lund, B., , Graber H. C. , , Xue J. , , and Romeiser R. , 2013: Analysis of internal wave signatures in marine radar data. IEEE Trans. Geosci. Remote Sens., 51, 48404852, doi:10.1109/TGRS.2012.2230635.

    • Search Google Scholar
    • Export Citation
  • Magalhaes, J., , Silva J. , , Batista M. , , Gostiaux L. , , Gerkema T. , , New A. , , and Jeans D. , 2013: On the detectability of internal waves by an imaging lidar. Geophys. Res. Lett., 40, 34293434, doi:10.1002/grl.50669.

    • Search Google Scholar
    • Export Citation
  • Moum, J. N., , Hebert D. , , Paulson C. , , and Caldwell D. , 1992a: Turbulence and internal waves at the equator. Part I: Statistics from towed thermistors and a microstructure profiler. J. Phys. Oceanogr., 22, 13301345, doi:10.1175/1520-0485(1992)022<1330:TAIWAT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Moum, J. N., , Hebert D. , , Paulson C. , , Caldwell D. , , McPhaden M. , , and Peters H. , 1992b: Internal waves, dynamic instabilities, and turbulence in the equatorial thermocline: An introduction to three papers in this issue. J. Phys. Oceanogr., 22, 13571359, doi:10.1175/1520-0485(1992)022<1357:IWDIAT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Moum, J. N., , Nash J. D. , , and Smyth W. D. , 2011: Narrowband oscillations in the upper equatorial ocean. Part I: Interpretation as shear instabilities. J. Phys. Oceanogr., 41, 397411, doi:10.1175/2010JPO4450.1.

    • Search Google Scholar
    • Export Citation
  • Nieto Borge, J. C., , Rodríguez Rodríguez G. , , Hessner K. , , and Izquierdo González P. , 2004: Inversion of marine radar images for surface wave analysis. J. Atmos. Oceanic Technol., 21, 12911300, doi:10.1175/1520-0426(2004)021<1291:IOMRIF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Oost, W. A., , Fairall C. W. , , Edson J. B. , , Smith S. D. , , Anderson R. J. , , Wills J. A. , , Katsaros K. B. , , and DeCosmo J. , 1994: Flow distortion calculations and their application in HEXMAX. J. Atmos. Oceanic Technol., 11, 366386, doi:10.1175/1520-0426(1994)011<0366:FDCATA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Pham, H. T., , Sarkar S. , , and Winters K. B. , 2012: Near-N oscillations and deep-cycle turbulence in an upper-equatorial undercurrent model. J. Phys. Oceanogr., 42, 21692184, doi:10.1175/JPO-D-11-0233.1.

    • Search Google Scholar
    • Export Citation
  • Pham, H. T., , Sarkar S. , , and Winters K. B. , 2013: Large-eddy simulation of deep-cycle turbulence in an equatorial undercurrent model. J. Phys. Oceanogr., 43, 24902502, doi:10.1175/JPO-D-13-016.1.

    • Search Google Scholar
    • Export Citation
  • Pinkel, R., , Rainville L. , , Slater E. , , Goldin A. , , Green L. , , Bui M. , , and Aja T. , 2003: The hydrographic Doppler sonar system on the Roger Revelle. Proceedings of the IEEE/OES Seventh Working Conference on Current Measurement Technology, IEEE, 237–239, doi:10.1109/CCM.2003.1194320.

  • Porter, D., , and Thompson D. , 1999: Continental shelf parameters inferred from SAR internal wave observations. J. Atmos. Oceanic Technol., 16, 475487, doi:10.1175/1520-0426(1999)016<0475:CSPIFS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Rainville, L., , and Pinkel R. , 2006: Baroclinic energy flux at the Hawaiian Ridge: Observations from the R/P FLIP. J. Phys. Oceanogr., 36, 11041122, doi:10.1175/JPO2882.1.

    • Search Google Scholar
    • Export Citation
  • Ramos, R. J., , Lund B. , , and Graber H. C. , 2009: Determination of internal wave properties from X-band radar observations. Ocean Eng., 36, 10391047, doi:10.1016/j.oceaneng.2009.07.004.

    • Search Google Scholar
    • Export Citation
  • Reineman, B. D., 2013: The development of instrumentation and methods for measurement of air-sea interaction and coastal processes from manned and unmanned aircraft. Ph.D. dissertation, Scripps Institution of Oceanography, University of California, San Diego, 182 pp.

  • Reineman, B. D., , Lenain L. , , Castel D. , , and Melville W. K. , 2009: A portable airborne scanning lidar system for ocean and coastal applications. J. Atmos. Oceanic Technol., 26, 26262641, doi:10.1175/2009JTECHO703.1.

    • Search Google Scholar
    • Export Citation
  • Reineman, B. D., , Lenain L. , , Statom N. M. , , and Melville W. K. , 2013: Development and testing of instrumentation for UAV-based flux measurements within terrestrial and marine atmospheric boundary layers. J. Atmos. Oceanic Technol., 30, 12951319, doi:10.1175/JTECH-D-12-00176.1.

    • Search Google Scholar
    • Export Citation
  • Sikora, T. D., , and Ufermann S. , 2004: Marine atmospheric boundary layer cellular convection and longitudinal roll vortices. Synthetic aperture radar marine user’s manual, C. R. Jackson and J. R. Apel, Eds., NOAA, 321–330.

  • Smyth, W. D., , Moum J. N. , , and Nash J. D. , 2011: Narrowband oscillations in the upper equatorial ocean. Part II: Properties of shear instabilities. J. Phys. Oceanogr., 41, 412428, doi:10.1175/2010JPO4451.1.

    • Search Google Scholar
    • Export Citation
  • Smyth, W. D., , Moum J. N. , , Li L. , , and Thorpe S. , 2013: Diurnal shear instability, the descent of the surface shear layer, and the deep cycle of equatorial turbulence. J. Phys. Oceanogr., 43, 24322455, doi:10.1175/JPO-D-13-089.1.

    • Search Google Scholar
    • Export Citation
  • Sullivan, P. P., , McWilliams J. C. , , and Patton E. G. , 2014: Large-eddy simulation of marine atmospheric boundary layers above a spectrum of moving waves. J. Atmos. Sci., 71, 40014027, doi:10.1175/JAS-D-14-0095.1.

    • Search Google Scholar
    • Export Citation
  • Wang, C., , and Pawlowicz R. , 2012: Oblique wave-wave interactions of nonlinear near-surface internal waves in the Strait of Georgia. J. Geophys. Res., 117, C06031, doi:10.1029/2012JC008022.

    • Search Google Scholar
    • Export Citation
  • Webb, E., , Pearman G. , , and Leuning R. , 1980: Correction of flux measurements for density effects due to heat and water vapour transfer. Quart. J. Roy. Meteor. Soc., 106, 85100, doi:10.1002/qj.49710644707.

    • Search Google Scholar
    • Export Citation
  • Yelland, M., , Moat B. , , Taylor P. , , Pascal R. , , Hutchings J. , , and Cornell V. , 1998: Wind stress measurements from the open ocean corrected for airflow distortion by the ship. J. Phys. Oceanogr., 28, 15111526, doi:10.1175/1520-0485(1998)028<1511:WSMFTO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Zhao, Z., , Alford M. H. , , MacKinnon J. A. , , and Pinkel R. , 2010: Long-range propagation of the semidiurnal internal tide from the Hawaiian Ridge. J. Phys. Oceanogr., 40, 713736, doi:10.1175/2009JPO4207.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 135 135 43
PDF Downloads 125 125 41

The Use of Ship-Launched Fixed-Wing UAVs for Measuring the Marine Atmospheric Boundary Layer and Ocean Surface Processes

View More View Less
  • 1 Scripps Institution of Oceanography, La Jolla, California
© Get Permissions
Restricted access

Abstract

The deployment and recovery of autonomous or remotely piloted platforms from research vessels have become a way of significantly extending the capabilities and reach of the research fleet. This paper describes the use of ship-launched and ship-recovered Boeing–Insitu ScanEagle unmanned aerial vehicles (UAVs). The UAVs were instrumented to characterize the marine atmospheric boundary layer (MABL) structure and dynamics, and to measure ocean surface processes during the October 2012 Equatorial Mixing (EquatorMix) experiment in the central Pacific and during the July 2013 Trident Warrior experiment off the Virginia coast. The UAV measurements, including atmospheric momentum and radiative, sensible, and latent heat fluxes, are complemented by measurements from ship-based instrumentation, including a foremast MABL eddy-covariance system, lidar altimeters, and a digitized X-band radar system. During EquatorMix, UAV measurements reveal longitudinal atmospheric roll structures not sampled by ship measurements, which contribute significantly to vertical fluxes of heat and momentum. With the nadir-looking UAV lidar, surface signatures of internal waves are observed, consistent and coherent with measurements from ship-based X-band radar, a Hydrographic Doppler Sonar System, and a theoretical model. In the Trident Warrior experiment, the instrumented UAVs were used to demonstrate real-time data assimilation of meteorological data from UAVs into regional coupled ocean–atmosphere models. The instrumented UAVs have provided unprecedented spatiotemporal resolution in atmospheric and oceanographic measurements in remote ocean locations, demonstrating the capabilities of these platforms to extend the range and capabilities of the research fleet for oceanographic and atmospheric studies.

Denotes Open Access content.

Supplemental information related to this paper is available at the Journals Online website: http://dx.doi.org/10.1175/JTECH-D-15-0019.s1.

Corresponding author address: Benjamin D. Reineman, Scripps Institution of Oceanography, 9500 Gilman Dr., La Jolla, CA 92093-0213. E-mail: reineman@ucsd.edu

Abstract

The deployment and recovery of autonomous or remotely piloted platforms from research vessels have become a way of significantly extending the capabilities and reach of the research fleet. This paper describes the use of ship-launched and ship-recovered Boeing–Insitu ScanEagle unmanned aerial vehicles (UAVs). The UAVs were instrumented to characterize the marine atmospheric boundary layer (MABL) structure and dynamics, and to measure ocean surface processes during the October 2012 Equatorial Mixing (EquatorMix) experiment in the central Pacific and during the July 2013 Trident Warrior experiment off the Virginia coast. The UAV measurements, including atmospheric momentum and radiative, sensible, and latent heat fluxes, are complemented by measurements from ship-based instrumentation, including a foremast MABL eddy-covariance system, lidar altimeters, and a digitized X-band radar system. During EquatorMix, UAV measurements reveal longitudinal atmospheric roll structures not sampled by ship measurements, which contribute significantly to vertical fluxes of heat and momentum. With the nadir-looking UAV lidar, surface signatures of internal waves are observed, consistent and coherent with measurements from ship-based X-band radar, a Hydrographic Doppler Sonar System, and a theoretical model. In the Trident Warrior experiment, the instrumented UAVs were used to demonstrate real-time data assimilation of meteorological data from UAVs into regional coupled ocean–atmosphere models. The instrumented UAVs have provided unprecedented spatiotemporal resolution in atmospheric and oceanographic measurements in remote ocean locations, demonstrating the capabilities of these platforms to extend the range and capabilities of the research fleet for oceanographic and atmospheric studies.

Denotes Open Access content.

Supplemental information related to this paper is available at the Journals Online website: http://dx.doi.org/10.1175/JTECH-D-15-0019.s1.

Corresponding author address: Benjamin D. Reineman, Scripps Institution of Oceanography, 9500 Gilman Dr., La Jolla, CA 92093-0213. E-mail: reineman@ucsd.edu
Save