• Atlas, D., , Srivastava R. C. , , and Sekhon R. S. , 1973: Doppler radar characteristics of precipitation at vertical incidence. Rev. Geophys., 11, 135, doi:10.1029/RG011i001p00001.

    • Search Google Scholar
    • Export Citation
  • Bohren, C. F., , and Huffman D. R. , 1983: Absorption and Scattering of Light by Small Particles. John Wiley and Sons, 550 pp.

  • Cariou, J.-P., , Augere B. , , and Valla M. , 2006: Laser source requirements for coherent lidars based on fiber technology. C. R. Phys., 7, 213223, doi:10.1016/j.crhy.2006.03.012.

    • Search Google Scholar
    • Export Citation
  • Frehlich, R. G., 2001: Estimation of velocity error for Doppler lidar measurements. J. Atmos. Oceanic Technol., 18, 16281639, doi:10.1175/1520-0426(2001)018<1628:EOVEFD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Frehlich, R. G., , and Yadlowsky M. J. , 1994: Performance of mean frequency estimators for Doppler radar and lidar. J. Atmos. Oceanic Technol., 11, 12171230, doi:10.1175/1520-0426(1994)011<1217:POMFEF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Frehlich, R. G., , Meillier Y. , , Jensen M. L. , , Balsley B. , , and Sharman R. , 2006: Measurements of boundary layer profiles in an urban environment. J. Appl. Meteor. Climatol., 45, 821837, doi:10.1175/JAM2368.1.

    • Search Google Scholar
    • Export Citation
  • Fukao, S., , Wakasugi K. , , Sato T. , , Morimoto S. , , Tsuda T. , , Hirota I. , , Kimura I. , , and Kato S. , 1985: Direct measurement of air and precipitation particle motion by very high frequency Doppler radar. Nature, 316, 712714, doi:10.1038/316712a0.

    • Search Google Scholar
    • Export Citation
  • Gossard, E. E., 1988: Measuring drop-size distributions in clouds with a clear-air-sensing Doppler radar. J. Atmos. Oceanic Technol., 5, 640648, doi:10.1175/1520-0426(1988)005<0640:MDSDIC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hauser, D., , and Amayenc P. , 1981: A new method for deducing hydrometeor-size distributions and vertical air motions from Doppler radar measurements at vertical incidence. J. Appl. Meteor., 20, 547555, doi:10.1175/1520-0450(1981)020<0547:ANMFDH>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Henderson, S. W., , Hale C. P. , , Magee J. R. , , Kavaya M. J. , , and Huffaker A. V. , 1991: Eye-safe coherent laser radar system at 2.1 μm using Tm,Ho:YAG lasers. Opt. Lett., 16, 773775, doi:10.1364/OL.16.000773.

    • Search Google Scholar
    • Export Citation
  • Henderson, S. W., , Suni P. J. M. , , Hale C. P. , , Hannon S. M. , , Magee J. R. , , Bruns D. L. , , and Yuen E. H. , 1993: Coherent laser radar at 2 µm using solid-state lasers. IEEE Trans. Geosci. Remote Sens., 31, 415, doi:10.1109/36.210439.

    • Search Google Scholar
    • Export Citation
  • Henderson, S. W., , Gatt P. , , Rees D. , , and Huffaker R. M. , 2005: Wind lidar. Laser Remote Sensing, T. Fujii and T. Fukuchi, Eds., Optical Science and Engineering, CRC Press, 469–722.

  • Hu, Z., , and Srivastava R. C. , 1995: Evolution of raindrop size distribution by coalescence, breakup, and evaporation: Theory and observations. J. Atmos. Sci., 52, 17611783, doi:10.1175/1520-0469(1995)052<1761:EORSDB>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Huffaker, R. M., 1970: Laser Doppler detection system for gas velocity measurement. Appl. Opt., 9, 10261039, doi:10.1364/AO.9.001026.

    • Search Google Scholar
    • Export Citation
  • Iguchi, T., , Kozu T. , , Meneghini R. , , Awaka J. , , and Okamoto K. , 2000: Rain-profiling algorithm for the TRMM precipitation radar. J. Appl. Meteor., 39, 20382052, doi:10.1175/1520-0450(2001)040<2038:RPAFTT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Ishii, S., and Coauthors, 2010: Coherent 2 μm differential absorption and wind lidar with conductively cooled laser and two-axis scanning device. Appl. Opt., 49, 18091817, doi:10.1364/AO.49.001809.

    • Search Google Scholar
    • Export Citation
  • Ishii, S., and Coauthors, 2012: Partial CO2 column-averaged dry-air mixing ratio from measurements by coherent 2-μm differential absorption and wind lidar with laser frequency offset locking. J. Atmos. Oceanic Technol., 29, 11691181, doi:10.1175/JTECH-D-11-00180.1.

    • Search Google Scholar
    • Export Citation
  • Ishii, S., and Coauthors, 2016: Measurement performance assessment of future space-borne Doppler wind lidar for numerical weather prediction. SOLA, 12, 5559, doi:10.2151/sola.2016-012.

    • Search Google Scholar
    • Export Citation
  • Iwai, H., , Ishii S. , , Oda R. , , Mizutani K. , , Sekizawa S. , , and Murayama Y. , 2013: Performance and technique of coherent 2-μm differential absorption and wind lidar for wind measurement. J. Atmos. Oceanic Technol., 30, 429448, doi:10.1175/JTECH-D-12-00111.1.

    • Search Google Scholar
    • Export Citation
  • Joss, J., , and Waldvogel A. , 1967: Ein spectrograph für Niederschlasgstropfen mit automatischer Auswertung (A spectrograph for the automatic analysis of raindrops). Pure Appl. Geophys., 68, 240246, doi:10.1007/BF00874898.

    • Search Google Scholar
    • Export Citation
  • Kalthoff, N., and Coauthors, 2013: KITcube—A mobile observation platform for convection studies deployed during HyMeX. Meteor. Z., 22, 633647, doi:10.1127/0941-2948/2013/0542.

    • Search Google Scholar
    • Export Citation
  • Kameyama, S., , Ando T. , , Asaka K. , , Hirano Y. , , and Wadaka S. , 2007: Compact all-fiber pulsed coherent Doppler lidar system for wind sensing. Appl. Opt., 46, 19531962, doi:10.1364/AO.46.001953.

    • Search Google Scholar
    • Export Citation
  • Kane, T. J., , Kozlovsky W. J. , , Byer R. L. , , and Byvik C. E. , 1987: Coherent laser radar at 1.06 µm using Nd:YAG lasers. Opt. Lett., 12, 239241, doi:10.1364/OL.12.000239.

    • Search Google Scholar
    • Export Citation
  • Kavaya, M. J., , Henderson S. W. , , Magee J. R. , , Hale C. P. , , and Huffaker R. M. , 1989: Remote wind profiling with a solid-state Nd:YAG coherent lidar system. Opt. Lett., 14, 776778, doi:10.1364/OL.14.000776.

    • Search Google Scholar
    • Export Citation
  • Klugmann, D., , Heinsohn K. , , and Kirtzel H. , 1996: A low cost 24 GHz FM-CW Doppler radar rain profiler. Contrib. Atmos. Phys., 69, 247253.

    • Search Google Scholar
    • Export Citation
  • Kobayashi, T., , and Adachi A. , 2001: Measurements of raindrop breakup by using UHF wind profiler. Geophys. Res. Lett., 28, 40714074, doi:10.1029/2001GL013254.

    • Search Google Scholar
    • Export Citation
  • Kobayashi, T., , and Adachi A. , 2005: Retrieval of arbitrarily shaped raindrop size distribution from wind profiler measurements. J. Atmos. Oceanic Technol., 22, 433442, doi:10.1175/JTECH1705.1.

    • Search Google Scholar
    • Export Citation
  • Larsen, M. F., , and Röttger J. , 1987: Observations of thunderstorm reflectivities and Doppler velocities measured at VHF and UHF. J. Atmos. Oceanic Technol., 4, 151159, doi:10.1175/1520-0426(1987)004<0151:OOTRAD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Levenberg, K., 1944: A method for the solution of certain non-linear problems in least squares. Quart. Appl. Math., 2, 164168.

  • Löffler-Mang, M., , and Joss J. , 2000: An optical disdrometer for measuring size and velocity of hydrometeors. J. Atmos. Oceanic Technol., 17, 130139, doi:10.1175/1520-0426(2000)017<0130:AODFMS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lottman, B., , Frehlich R. , , Hannon S. , , and Henderson S. , 2001: Evaluation of vertical winds near and inside a cloud deck using coherent Doppler lidar. J. Atmos. Oceanic Technol., 18, 13771386, doi:10.1175/1520-0426(2001)018<1377:EOVWNA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Low, T. B., , and List R. , 1982: Collision, coalescence, and breakup of raindrops. Part II: Parameterization of fragment size distributions. J. Atmos. Sci., 39, 16071618, doi:10.1175/1520-0469(1982)039<1607:CCABOR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Marshall, J. S., , and Palmer W. M. , 1948: The distribution of raindrops with size. J. Meteor., 5, 165166, doi:10.1175/1520-0469(1948)005<0165:TDORWS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Mizutani, K., and Coauthors, 2015: Diode-pumped 2-µm pulse laser with noncomposite Tm,Ho:YLF rod conduction-cooled down to −80°C. Appl. Opt., 54, 78657869, doi:10.1364/AO.54.007865.

    • Search Google Scholar
    • Export Citation
  • Nakamura, K., , and Iguchi T. , 2007: Dual-wavelength radar algorithm. Measuring Precipitation from Space: EURAINSAT and the Future, V. Levizanni, P. Bauer, and F. J. Turk, Eds., Advances in Global Change Research, Vol. 28, Springer, 225–234, doi:10.1007/978-1-4020-5835-6_18.

  • Palmer, K. F., , and Williams D. , 1974: Optical properties of water in the near infrared. J. Opt. Soc. Amer., 64, 11071110, doi:10.1364/JOSA.64.001107.

    • Search Google Scholar
    • Export Citation
  • Pearson, G. N., , Roberts P. J. , , Eacock J. R. , , and Harris M. , 2002: Analysis of the performance of a coherent pulsed fiber lidar for aerosol backscatter applications. Appl. Opt., 41, 64426450, doi:10.1364/AO.41.006442.

    • Search Google Scholar
    • Export Citation
  • Peters, G., , Fischer B. , , Münster H. , , Clemens M. , , and Wagner A. , 2005: Profiles of raindrop size distributions as retrieved by microrain radars. J. Appl. Meteor., 44, 19301949, doi:10.1175/JAM2316.1.

    • Search Google Scholar
    • Export Citation
  • Rajopadhyaya, D. K., , May P. T. , , and Vincent R. A. , 1993: A general approach to the retrieval of raindrop size distributions from wind profiler Doppler spectra: Modeling result. J. Appl. Meteor., 10, 710717, doi:10.1175/1520-0426(1993)010<0710:AGATTR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Rogers, R. R., 1967: Doppler radar investigations of Hawaiian rain. Tellus, 19A, 432455, doi:10.1111/j.2153-3490.1967.tb01498.x.

  • Rye, B. J., , and Hardesty R. M. , 1993: Discrete spectral peak estimation in Doppler lidar. I: Incoherent spectral accumulation and the Cramer-Rao bound. IEEE Trans. Geosci. Remote Sens., 31, 1627, doi:10.1109/36.210440.

    • Search Google Scholar
    • Export Citation
  • Schönhuber, M., , Lammer G. , , and Randeu W. L. , 2007: One decade of imaging precipitation measurement by 2D-video-disdrometer. Adv. Geosci., 10, 8590, doi:10.5194/adgeo-10-85-2007.

    • Search Google Scholar
    • Export Citation
  • Smith, D. A., , Harris M. , , Coffey A. S. , , Mikkelsen T. , , Jørgensen H. E. , , Mann J. , , and Danielian R. , 2006: Wind lidar evaluation at the Danish wind test site in Høvsøre. Wind Energy, 9, 8793, doi:10.1002/we.193.

    • Search Google Scholar
    • Export Citation
  • Takahashi, T., 1990: Near absence of lightning in tropical rainfall producing Micronesian thunderstorms. Geophys. Res. Lett., 17, 23812384, doi:10.1029/GL017i013p02381.

    • Search Google Scholar
    • Export Citation
  • Tang, W., , Chan P. W. , , and Haller G. , 2011: Lagrangian coherent structure analysis of terminal winds detected by lidar. Part I: Turbulence structures. J. Appl. Meteor. Climatol., 50, 325338, doi:10.1175/2010JAMC2508.1.

    • Search Google Scholar
    • Export Citation
  • Tokay, A., , Wolff D. B. , , and Petersen W. A. , 2014: Evaluation of the new version of laser-optical disdrometer, OTT Parsivel2. J. Atmos. Oceanic Technol., 31, 12761288, doi:10.1175/JTECH-D-13-00174.1.

    • Search Google Scholar
    • Export Citation
  • Träumner, K., , Handwerker J. , , Wieser A. , , and Grenzhäuser J. , 2010: A synergy approach to estimate properties of raindrop size distributions using a Doppler lidar and cloud radar. J. Atmos. Oceanic Technol., 27, 10951100, doi:10.1175/2010JTECHA1377.1.

    • Search Google Scholar
    • Export Citation
  • Ulbrich, C. W., 1983: Natural variations in the analytical form of the raindrop size distribution. J. Climate Appl. Meteor., 22, 17641775, doi:10.1175/1520-0450(1983)022<1764:NVITAF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wakasugi, K., , Mizutani A. , , Matauo M. , , Fukuo S. , , and Kato S. , 1986: A direct method for deriving drop-size distribution and vertical air velocities from VHF Doppler radar spectra. J. Atmos. Oceanic Technol., 3, 623629, doi:10.1175/1520-0426(1986)003<0623:ADMFDD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Westbrook, C. D., , Hogan R. J. , , O’Connor E. J. , , and Illingworth A. J. , 2010: Estimating drizzle drop size and precipitation rate using two-colour lidar measurement. Atmos. Meas. Tech., 3, 671681, doi:10.5194/amt-3-671-2010.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 144 144 42
PDF Downloads 133 133 38

Measurements of Rainfall Velocity and Raindrop Size Distribution Using Coherent Doppler Lidar

View More View Less
  • 1 National Institute of Information and Communications Technology, Koganei, Tokyo, Japan
© Get Permissions
Restricted access

Abstract

Rainfall velocity, raindrop size distribution (DSD), and vertical wind velocity were simultaneously observed with 2.05- and 1.54-μm coherent Doppler lidars during convective and stratiform rain events. A retrieval method is based on identifying two separate spectra from the convolution of the aerosol and precipitation Doppler lidar spectra. The vertical wind velocity was retrieved from the aerosol spectrum peak and then the terminal rainfall velocity corrected by the vertical air motion from the precipitation spectrum peak was obtained. The DSD was derived from the precipitation spectrum using the relationship between the raindrop size and the terminal rainfall velocity. A comparison of the 1-min-averaged rainfall velocity from Doppler lidar measurements at a minimum range and that from a collocated ground-based optical disdrometer revealed high correlation coefficients of over 0.89 for both convective and stratiform rain events. The 1-min-averaged DSDs retrieved from the Doppler lidar spectrum using parametric and nonparametric methods are also in good agreement with those measured with the optical disdrometer with a correlation coefficient of over 0.80 for all rain events. To retrieve the DSD, the parametric method assumes a mathematical function for the DSD and the nonparametric method computes the direct deconvolution of the measured Doppler lidar spectrum without assuming a DSD function. It is confirmed that the Doppler lidar can retrieve the rainfall velocity and DSD during relatively heavy rain, whereas the ratio of valid data significantly decreases in light rain events because it is extremely difficult to separate the overlapping rain and aerosol peaks in the Doppler spectrum.

Corresponding author address: Makoto Aoki, National Institute of Information and Communications Technology, 4-2-1 Nukui-Kitamachi, Koganei, Tokyo 184-8795, Japan. E-mail: maoki@nict.go.jp

Abstract

Rainfall velocity, raindrop size distribution (DSD), and vertical wind velocity were simultaneously observed with 2.05- and 1.54-μm coherent Doppler lidars during convective and stratiform rain events. A retrieval method is based on identifying two separate spectra from the convolution of the aerosol and precipitation Doppler lidar spectra. The vertical wind velocity was retrieved from the aerosol spectrum peak and then the terminal rainfall velocity corrected by the vertical air motion from the precipitation spectrum peak was obtained. The DSD was derived from the precipitation spectrum using the relationship between the raindrop size and the terminal rainfall velocity. A comparison of the 1-min-averaged rainfall velocity from Doppler lidar measurements at a minimum range and that from a collocated ground-based optical disdrometer revealed high correlation coefficients of over 0.89 for both convective and stratiform rain events. The 1-min-averaged DSDs retrieved from the Doppler lidar spectrum using parametric and nonparametric methods are also in good agreement with those measured with the optical disdrometer with a correlation coefficient of over 0.80 for all rain events. To retrieve the DSD, the parametric method assumes a mathematical function for the DSD and the nonparametric method computes the direct deconvolution of the measured Doppler lidar spectrum without assuming a DSD function. It is confirmed that the Doppler lidar can retrieve the rainfall velocity and DSD during relatively heavy rain, whereas the ratio of valid data significantly decreases in light rain events because it is extremely difficult to separate the overlapping rain and aerosol peaks in the Doppler spectrum.

Corresponding author address: Makoto Aoki, National Institute of Information and Communications Technology, 4-2-1 Nukui-Kitamachi, Koganei, Tokyo 184-8795, Japan. E-mail: maoki@nict.go.jp
Save