• Atkins, N. T., , Butler K. M. , , Flynn K. R. , , and Wakimoto R. M. , 2014: An integrated damage, visual, and radar analysis of the 2013 Moore Oklahoma EF5 tornado. Bull. Amer. Meteor. Soc., 95, 15491561, doi:10.1175/BAMS-D-14-00033.1.

    • Search Google Scholar
    • Export Citation
  • Atlas, D., 1953: Scattering and attenuation by non-spherical atmospheric particles. J. Atmos. Terr. Phys., 3, 108119, doi:10.1016/0021-9169(53)90093-2.

    • Search Google Scholar
    • Export Citation
  • Atlas, D., , and Ludlam F. H. , 1961: Multi-wavelength radar reflectivity of hailstorms. Quart. J. Roy. Meteor. Soc., 87, 523534, doi:10.1002/qj.49708737407.

    • Search Google Scholar
    • Export Citation
  • Balanis, C. A., 2012: Advanced Engineering Electromagnetics. 2nd ed. John Wiley & Sons, 1018 pp.

  • Bluestein, H. B., , French M. M. , , Tanamachi R. L. , , Frasier S. , , Hardwick K. , , Junyent F. , , and Pazmany A. , 2007: Close-range observations of tornadoes in supercells made with a dual-polarization, X-band, mobile Doppler radar. Mon. Wea. Rev., 135, 15221543, doi:10.1175/MWR3349.1.

    • Search Google Scholar
    • Export Citation
  • Bodine, D. J., 2014: Polarimetric radar observations and numerical simulations of tornadic debris. Ph.D. dissertation, University of Oklahoma, 264 pp.

  • Bodine, D. J., , Kumjian M. R. , , Palmer R. D. , , Heinselman P. L. , , and Ryzhkov A. V. , 2013: Tornado damage estimation using polarimetric radar. Wea. Forecasting, 28, 139158, doi:10.1175/WAF-D-11-00158.1.

    • Search Google Scholar
    • Export Citation
  • Bodine, D. J., , Palmer R. D. , , Maruyama T. , , Fulton C. J. , , and Cheong B. L. , 2014a: Dual-frequency simulations of radar observations of tornadoes. 27th Conf. on Severe Local Storms, Madison, WI, Amer. Meteor. Soc., 15A.2. [Available online at https://ams.confex.com/ams/27SLS/webprogram/Paper254253.html.]

  • Bodine, D. J., , Palmer R. D. , , and Zhang G. , 2014b: Dual-wavelength polarimetric radar analyses of tornadic debris signatures. J. Appl. Meteor. Climatol., 53, 242261, doi:10.1175/JAMC-D-13-0189.1.

    • Search Google Scholar
    • Export Citation
  • Bunkers, M. J., , and Baxter M. A. , 2011: Radar tornadic debris signatures on 27 April 2011. Electron. J. Oper. Meteor., 12 (7). [Available online at http://www.nwas.org/ej/2011-ION1/index.html.]

    • Search Google Scholar
    • Export Citation
  • Cheong, B. L., , Palmer R. D. , , and Xue M. , 2008: A time series weather radar simulator based on high-resolution atmospheric models. J. Atmos. Oceanic Technol., 25, 230243, doi:10.1175/2007JTECHA923.1.

    • Search Google Scholar
    • Export Citation
  • Cheong, B. L., , Bodine D. , , Zhu Y. , , Fulton C. , , Torres S. , , Maruyama T. , , and Palmer R. , 2015: Emulating polarimetric radar signals from tornadic debris using a radar-cross-section library. European Radar Conference (EuRAD), Paris, France, IEEE, 249–252, doi:10.1109/EuRAD.2015.7346284.

  • Church, C. R., , Snow J. T. , , Baker G. L. , , and Agee E. M. , 1979: Characteristics of tornado-like vortices as a function of swirl ratio: A laboratory investigation. J. Atmos. Sci., 36, 17551776, doi:10.1175/1520-0469(1979)036<1755:COTLVA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Daian, G., , Taube A. , , Birnboim A. , , Daian M. , , and Shramkov Y. , 2006: Modeling the dielectric properties of wood. Wood Sci. Technol., 40, 237246, doi:10.1007/s00226-005-0060-7.

    • Search Google Scholar
    • Export Citation
  • Davies-Jones, R. P., 1973: The dependence of core radius on swirl ratio in a tornado simulator. J. Atmos. Sci., 30, 14271430, doi:10.1175/1520-0469(1973)030<1427:TDOCRO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Doswell, C. A., III, , and Burgess D. W. , 1993: Tornadoes and tornadic storms: A review of conceptual models. The Tornado: Its Structure, Dynamics, Prediction and Hazards, Geophys. Monogr., Vol. 79, Amer. Geophys. Union, 161–172, doi:10.1029/GM079p0161.

  • Doviak, R. J., , and Zrnić D. S. , 1993: Doppler Radar and Weather Observations. 2nd ed. Dover Publications, 562 pp.

  • Dowell, D. C., , Alexander C. R. , , Wurman J. M. , , and Wicker L. J. , 2005: Centrifuging of hydrometeors and debris in tornadoes: Radar-reflectivity patterns and wind-measurement errors. Mon. Wea. Rev., 133, 15011524, doi:10.1175/MWR2934.1.

    • Search Google Scholar
    • Export Citation
  • Holmes, J. D., , Baker C. J. , , and Tamura Y. , 2006: Tachikawa number: A proposal. J. Wind Eng. Ind. Aerodyn., 94, 4147, doi:10.1016/j.jweia.2005.10.004.

    • Search Google Scholar
    • Export Citation
  • Jebbor, N., , Bri S. , , Nakheli A. , , Bejjit L. , , Hdddad M. , , and Mamouni A. , 2011: Complex permittivity determination with the transmission/reflection method. Int. J. Emerg. Sci., 4, 682695.

    • Search Google Scholar
    • Export Citation
  • Knott, E. F., , Tuley M. T. , , and Shaeffer J. F. , 1993: Radar Cross Section. 2nd ed. Artech House, 611 pp.

  • Kosiba, K., , and Wurman J. , 2010: The three-dimensional axisymmetric wind field structure of the Spencer, South Dakota, 1998 tornado. J. Atmos. Sci., 67, 30743083, doi:10.1175/2010JAS3416.1.

    • Search Google Scholar
    • Export Citation
  • Kumjian, M. R., , and Ryzhkov A. V. , 2008: Polarimetric signatures in supercell thunderstorms. J. Appl. Meteor. Climatol., 47, 19401961, doi:10.1175/2007JAMC1874.1.

    • Search Google Scholar
    • Export Citation
  • Kurdzo, J. M., , Bodine D. J. , , Cheong B. L. , , and Palmer R. D. , 2015: High-temporal resolution polarimetric X-band Doppler radar observations of the 20 May 2013 Moore, Oklahoma tornado. Mon. Wea. Rev., 143, 27112735, doi:10.1175/MWR-D-14-00357.1.

    • Search Google Scholar
    • Export Citation
  • Lee, W.-C., , and Wurman J. , 2005: Diagnosed three-dimensional axisymmetric structure of the Mulhall tornado on 3 May 1999. J. Atmos. Sci., 62, 23732393, doi:10.1175/JAS3489.1.

    • Search Google Scholar
    • Export Citation
  • Lee, W.-C., , Jou B. J.-D. , , Chang P.-L. , , and Deng S.-M. , 1999: Tropical cyclone kinematic structure retrieved from single-Doppler radar observations. Part I: Doppler velocity patterns and the GBVTD technique. Mon. Wea. Rev., 127, 24192439, doi:10.1175/1520-0493(1999)127<2419:TCKSRF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lewellen, D. C., , Gong B. , , and Lewellen W. S. , 2008: Effects of finescale debris on near-surface tornado dynamics. J. Atmos. Sci., 65, 32473262, doi:10.1175/2008JAS2686.1.

    • Search Google Scholar
    • Export Citation
  • Marshall, J. S., , and Palmer W. M. K. , 1948: The distribution of raindrops with size. J. Meteor., 5, 165166, doi:10.1175/1520-0469(1948)005<0165:TDORWS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Maruyama, T., 2011: Simulation of flying debris using a numerically generated tornado-like vortex. J. Wind Eng. Ind. Aerodyn., 99, 249256, doi:10.1016/j.jweia.2011.01.016.

    • Search Google Scholar
    • Export Citation
  • Matrosov, S. Y., 2011: Feasibility of using radar differential Doppler velocity and dual-frequency ratio for sizing particles in thick ice clouds. J. Geophys. Res., 116, D17202, doi:10.1029/2011JD015857.

    • Search Google Scholar
    • Export Citation
  • McDonald, J. R., , Forbes G. S. , , and Marshall T. P. , 2004: The enhanced Fujita (EF) scale. 22nd Conf. on Severe Local Storms, Hyannis, MA, Amer. Meteor. Soc., 3B.2. [Available online at https://ams.confex.com/ams/11aram22sls/techprogram/paper_81090.htm.]

  • Mishchenko, M. I., 2000: Calculation of the amplitude matrix for a nonspherical particle in a fixed orientation. Appl. Opt., 39, 10261031, doi:10.1364/AO.39.001026.

    • Search Google Scholar
    • Export Citation
  • Mishchenko, M. I., , Travis L. D. , , and Mackowski D. W. , 1996: T-matrix computations of light scattering by nonspherical particles: A review. J. Quant. Spectrosc. Radiat. Transfer, 55, 535575, doi:10.1016/0022-4073(96)00002-7.

    • Search Google Scholar
    • Export Citation
  • Nolan, D. S., 2013: On the use of Doppler radar–derived wind fields to diagnose the secondary circulations of tornadoes. J. Atmos. Sci., 70, 11601171, doi:10.1175/JAS-D-12-0200.1.

    • Search Google Scholar
    • Export Citation
  • Palmer, R. D., and Coauthors, 2011: The 10 May 2010 tornado outbreak in central Oklahoma: Potential for new science with high-resolution polarimetric radar. Bull. Amer. Meteor. Soc., 92, 871891, doi:10.1175/2011BAMS3125.1.

    • Search Google Scholar
    • Export Citation
  • Picca, J., , and Ryzhkov A. , 2012: A dual-wavelength polarimetric analysis of the 16 May 2010 Oklahoma City extreme hailstorm. Mon. Wea. Rev., 140, 13851403, doi:10.1175/MWR-D-11-00112.1.

    • Search Google Scholar
    • Export Citation
  • Ray, P. S., 1972: Broadband complex refractive indices of ice and water. Appl. Opt., 11, 18361844, doi:10.1364/AO.11.001836.

  • Ryzhkov, A. V., , Schuur T. J. , , Burgess D. W. , , and Zrnić D. S. , 2005: Polarimetric tornado detection. J. Appl. Meteor., 44, 557570, doi:10.1175/JAM2235.1.

    • Search Google Scholar
    • Export Citation
  • Schultz, C. J., and Coauthors, 2012a: Dual-polarization tornadic debris signatures Part I: Examples and utility in an operational setting. Electron. J. Operational Meteor., 13, 120137.

    • Search Google Scholar
    • Export Citation
  • Schultz, C. J., and Coauthors, 2012b: Dual-polarization tornadic debris signatures Part II: Comparisons and caveats. Electron. J. Operational Meteor., 13, 138150.

    • Search Google Scholar
    • Export Citation
  • Senior, T. B., , Sarabandi K. , , and Ulaby F. T. , 1987: Measuring and modeling the backscattering cross section of a leaf. Radio Sci., 22, 11091116, doi:10.1029/RS022i006p01109.

    • Search Google Scholar
    • Export Citation
  • Simiu, E., , and Scanlan R. H. , 1996: Wind Effects on Structures: Fundamentals and Applications to Design. 3rd ed. John Wiley, 688 pp.

  • Snow, J. T., 1984: On the formation of particle sheaths in columnar vortices. J. Atmos. Sci., 41, 24772491, doi:10.1175/1520-0469(1984)041<2477:OTFOPS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Snow, J. T., , Wyatt A. L. , , McCarthy A. K. , , and Bishop E. K. , 1995: Fallout of debris from tornadic thunderstorms: A historical perspective and two examples from VORTEX. Bull. Amer. Meteor. Soc., 76, 17771790, doi:10.1175/1520-0477(1995)076<1777:FODFTT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Snyder, J. C., , and Bluestein H. B. , 2014: Some considerations for the use of high-resolution mobile radar data in tornado intensity determination. Wea. Forecasting, 29, 799827, doi:10.1175/WAF-D-14-00026.1.

    • Search Google Scholar
    • Export Citation
  • Snyder, J. C., , Bluestein H. B. , , Zhang G. , , and Frasier S. J. , 2010: Attenuation correction and hydrometeor classification of high-resolution, X-band, dual-polarized mobile radar measurements in severe convective storms. J. Atmos. Oceanic Technol., 27, 19792001, doi:10.1175/2010JTECHA1356.1.

    • Search Google Scholar
    • Export Citation
  • Uchida, T., , and Ohya Y. , 2003: Large-eddy simulation of turbulent airflow over complex terrain. J. Wind Eng. Ind. Aerodyn., 91, 219229, doi:10.1016/S0167-6105(02)00347-1.

    • Search Google Scholar
    • Export Citation
  • Ulaby, F. T., , and El-Rayes M. , 1986: Microwave dielectric spectrum of vegetation material. Proceedings of the 1986 International Geoscience and Remote Sensing Symposium (IGARSS’86) on Remote Sensing: Today’s Solutions for Tomorrow's Information Needs,Vol. 2, ESA Publications Division, ESA SP-254, 1103–1106.

  • Vivekanandan, J., , Politovich M. , , Rilling R. , , Ellis S. , , and Pratte F. , 2004: Sensitivity of S- and Ka-band matched dual-wavelength radar system for detecting nonprecipitating cloud. Microwave Remote Sensing of the Atmosphere and Environment IV, G. Skofronick Jackson and S. Uratsuka, Eds., International Society for Optical Engineering (SPIE Proceedings, Vol. 5654), 14–24, doi:10.1117/12.581131.

  • Wakimoto, R. M., , Stauffer P. , , Lee W.-C. , , Atkins N. T. , , and Wurman J. , 2012: Finescale structure of the LaGrange, Wyoming, tornado during VORTEX2: GBVTD and photogrammetric analyses. Mon. Wea. Rev., 140, 33973418, doi:10.1175/MWR-D-12-00036.1.

    • Search Google Scholar
    • Export Citation
  • Waterman, P. C., 1969: Scattering by dielectric obstacles. Alta Freq., 38, 348352.

  • Waterman, P. C., 1971: Symmetry, unitarity and geometry in electromagnetic scattering. Phys. Rev., 3D, 825839, doi:10.1103/PhysRevD.3.825.

    • Search Google Scholar
    • Export Citation
  • White, F. M., 1991: Viscous Fluid Flow. 2nd ed. McGraw-Hill Series in Mechanical Engineering, McGraw-Hill, 614 pp.

  • Wurman, J., , and Gill S. , 2000: Finescale radar observations of the Dimmitt, Texas (2 June 1995), tornado. Mon. Wea. Rev., 128, 21352164, doi:10.1175/1520-0493(2000)128<2135:FROOTD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wurman, J., , Straka J. M. , , and Rasmussen E. N. , 1996: Fine-scale Doppler radar observations of tornadoes. Science, 272, 17741777, doi:10.1126/science.272.5269.1774.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 25 25 13
PDF Downloads 25 25 12

Simulated Frequency Dependence of Radar Observations of Tornadoes

View More View Less
  • 1 Advanced Study Program, National Center for Atmospheric Research, Boulder, Colorado, and School of Meteorology, and Advanced Radar Research Center, University of Oklahoma, Norman, Oklahoma
  • 2 School of Meteorology, and Advanced Radar Research Center, University of Oklahoma, Norman, Oklahoma
  • 3 Disaster Prevention Research Institute, Kyoto University, Kyoto, Japan
  • 4 Advanced Radar Research Center, and School of Electrical and Computer Engineering, University of Oklahoma, Norman, Oklahoma
© Get Permissions
Restricted access

Abstract

To obtain accurate radar-measured wind measurements in tornadoes, differences between air and Doppler velocities must be corrected. These differences can cause large errors in radar estimates of maximum tangential wind speeds, and large errors in single-Doppler retrievals of radial and vertical velocities. Since larger scatterers (e.g., debris) exhibit larger differences from air velocities compared to small scatterers (e.g., raindrops), the dominant scatterer type affecting radar measurements is examined. In this study, radar variables are simulated for common weather radar frequencies using debris and raindrop trajectories computed with a large-eddy simulation model and two electromagnetic scattering models. These simulations include a large range of raindrop and wood board sizes and concentrations, and reveal the significant frequency dependence of the equivalent reflectivity factor and Doppler velocity. At S band, dominant scatterers are wood boards, except when wood board concentrations are very low. In contrast, raindrops are the dominant scatterers at Ka and W bands even when large concentrations of wood boards are present, except for low raindrop concentrations. Dual-wavelength velocity differences exhibit high correlation with air and Doppler velocity differences for most cases, which may enable direct measurements of scatterer-induced Doppler velocity bias in tornadoes. Moreover, dual-wavelength ratios are shown to exhibit strong correlations with dominant scatterer size, except when Rayleigh scatterers are dominant. Finally, vertical velocity retrievals are shown to exhibit lower errors at high frequencies, and large errors remain at centimeter wavelengths even after debris centrifuging corrections are applied in cases with high debris concentration.

The National Center for Atmospheric Research is sponsored by the National Science Foundation.

Corresponding author address: David Bodine, Advanced Study Program, National Center for Atmospheric Research, 3450 Mitchell Lane, Boulder, CO 80302. E-mail: dbodine@ucar.edu

Abstract

To obtain accurate radar-measured wind measurements in tornadoes, differences between air and Doppler velocities must be corrected. These differences can cause large errors in radar estimates of maximum tangential wind speeds, and large errors in single-Doppler retrievals of radial and vertical velocities. Since larger scatterers (e.g., debris) exhibit larger differences from air velocities compared to small scatterers (e.g., raindrops), the dominant scatterer type affecting radar measurements is examined. In this study, radar variables are simulated for common weather radar frequencies using debris and raindrop trajectories computed with a large-eddy simulation model and two electromagnetic scattering models. These simulations include a large range of raindrop and wood board sizes and concentrations, and reveal the significant frequency dependence of the equivalent reflectivity factor and Doppler velocity. At S band, dominant scatterers are wood boards, except when wood board concentrations are very low. In contrast, raindrops are the dominant scatterers at Ka and W bands even when large concentrations of wood boards are present, except for low raindrop concentrations. Dual-wavelength velocity differences exhibit high correlation with air and Doppler velocity differences for most cases, which may enable direct measurements of scatterer-induced Doppler velocity bias in tornadoes. Moreover, dual-wavelength ratios are shown to exhibit strong correlations with dominant scatterer size, except when Rayleigh scatterers are dominant. Finally, vertical velocity retrievals are shown to exhibit lower errors at high frequencies, and large errors remain at centimeter wavelengths even after debris centrifuging corrections are applied in cases with high debris concentration.

The National Center for Atmospheric Research is sponsored by the National Science Foundation.

Corresponding author address: David Bodine, Advanced Study Program, National Center for Atmospheric Research, 3450 Mitchell Lane, Boulder, CO 80302. E-mail: dbodine@ucar.edu
Save