• Alpers, W., , Ross D. , , and Rufenach C. , 1981a: On the detectability of ocean surface waves by real and synthetic aperture radar. J. Geophys. Res., 86, 64816498, doi:10.1029/JC086iC07p06481.

    • Search Google Scholar
    • Export Citation
  • Alpers, W., , Schröter J. , , Schlude F. , , Müller H.-J. , , and Koltermann K. P. , 1981b: Ocean surface current measurements by an L band two-frequency microwave scatterometer. Radio Sci., 16, 93100, doi:10.1029/RS016i001p00093.

    • Search Google Scholar
    • Export Citation
  • Barrick, D. E., 1972: First-order theory and analysis of MF/HF/VHF scatter from the sea. IEEE Trans. Antennas Propag., 20, 210, doi:10.1109/TAP.1972.1140123.

    • Search Google Scholar
    • Export Citation
  • Bell, P. S., 1999: Shallow water bathymetry derived from an analysis of X-band marine radar images of waves. Coast. Eng., 37, 513527, doi:10.1016/S0378-3839(99)00041-1.

    • Search Google Scholar
    • Export Citation
  • Bogden, P. S., , Malanotte-Rizzoli P. , , and Signell R. , 1996: Open-ocean boundary conditions from interior data: Local and remote forcing of Massachusetts Bay. J. Geophys. Res., 101, 64876500, doi:10.1029/95JC03705.

    • Search Google Scholar
    • Export Citation
  • Cohen, A. M., 2007: Numerical Methods for Laplace Transform Inversion. Numerical Methods and Algorithms, Vol. 5, Springer, 252 pp.

  • Crombie, D. D., 1955: Doppler spectrum of sea echo at 13.56 Mc./s. Nature, 175, 681682, doi:10.1038/175681a0.

  • Dankert, H., , and Rosenthal W. , 2004: Ocean surface determination from X-band radar-image sequences. J. Geophys. Res., 109, C04016, doi:10.1029/2003JC002130.

    • Search Google Scholar
    • Export Citation
  • Davis, R. E., , deSzoeke R. , , Halpern D. , , and Niiler P. , 1981: Variability in the upper ocean during MILE. Part I: The heat and momentum balances. Deep-Sea Res., 28A, 14271451, doi:10.1016/0198-0149(81)90091-1.

    • Search Google Scholar
    • Export Citation
  • Dugan, J., , Piotrowski C. , , Zuckerman S. , , Chinn C. , , Yi M. , , and Vierra K. , 2008: Near-surface current profile measurements using time series optical imagery. Proceedings of the IEEE/OES/CMTC Ninth Working Conference on Current Measurement Technology, J. Rizoli White and S. P. Anderson, Eds., IEEE, 174–180, doi:10.1109/CCM.2008.4480864.

  • Fernandez, D. M., , Vesecky J. F. , , and Teague C. C. , 1996: Measurements of upper ocean surface current shear with high-frequency radar. J. Geophys. Res., 101, 28 61528 625, doi:10.1029/96JC03108.

    • Search Google Scholar
    • Export Citation
  • Golub, B. G. H., , and Welsch J. H. , 1969: Calculation of Gauss quadrature rules. Math. Comput., 23, 221230, doi:10.1090/S0025-5718-69-99647-1.

    • Search Google Scholar
    • Export Citation
  • Ha, E. C., 1979: Remote sensing of ocean surface current shear by HF backscatter radar. Ph.D. thesis, Stanford University, 134 pp.

  • Halpern, D., 1977: Description of wind and of upper ocean current and temperature variations on the continental shelf off northwest Africa during March and April 1974. J. Phys. Oceanogr., 7, 422430, doi:10.1175/1520-0485(1977)007<0422:DOWAOU>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Harlan, J., , Terrill E. , , and Burnett B. , 2009: National high frequency radar network: update. OCEANS 2009: MTS/IEEE Biloxi—Marine Technology for Our Future; Global and Local Challenges, IEEE, 463–469.

  • Harlan, J., and Coauthors, 2011: National IOOS high frequency radar search and rescue project. Proc. OCEANS’11: MTS/IEEE Kona, Waikoloa, HI, IEEE, 9 pp. [Available online at http://ieeexplore.ieee.org/document/6107090.]

  • Hessner, K., , and Bell P. S. , 2009: High resolution current and bathymetry determined by nautical X-Band radar in shallow waters. Proc. OCEANS’09 IEEE Bremen: Balancing Technology with Future Needs, Bremen, Germany, IEEE, 5 pp., doi:10.1109/OCEANSE.2009.5278333.

  • Hetland, R. D., 2006: Event-driven model skill assessment. Ocean Modell., 11, 214223, doi:10.1016/j.ocemod.2004.12.001.

  • Kirby, J. T., , and Chen T.-M. , 1989: Surface waves on vertically sheared flows: Approximate dispersion relations. J. Geophys. Res., 94, 10131027, doi:10.1029/JC094iC01p01013.

    • Search Google Scholar
    • Export Citation
  • Kohut, J. T., , Roarty H. J. , , and Glenn S. M. , 2006: Characterizing observed environmental variability with HF Doppler radar surface current mappers and acoustic Doppler current profilers: Environmental variability in the coastal ocean. IEEE J. Oceanic Eng., 31, 876884, doi:10.1109/JOE.2006.886095.

    • Search Google Scholar
    • Export Citation
  • Nieto Borge, J. C., , Rodríguez G. R. , , Hessner K. , , and González P. I. , 2004: Inversion of marine radar images for surface wave analysis. J. Atmos. Oceanic Technol., 21, 12911300, doi:10.1175/1520-0426(2004)021<1291:IOMRIF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Ohlmann, C., , White P. , , Washburn L. , , Terrill E. , , Emery B. , , and Otero M. , 2007: Interpretation of coastal HF radar-derived surface currents with high-resolution drifter data. J. Atmos. Oceanic Technol., 24, 666680, doi:10.1175/JTECH1998.1.

    • Search Google Scholar
    • Export Citation
  • Paduan, J. D., , and Rosenfeld L. K. , 1996: Remotely sensed surface currents in Monterey Bay from shore-based HF radar (Coastal Ocean Dynamics Application Radar). J. Geophys. Res., 101, 20 66920 686, doi:10.1029/96JC01663.

    • Search Google Scholar
    • Export Citation
  • Phillips, O. M., 1966: The Dynamics of the Upper Ocean. Cambridge University Press, 344 pp.

  • Senet, C. M., , Seemann J. , , and Ziemer F. , 2001: The near-surface current velocity determined from image sequences of the sea surface. IEEE Trans. Geosci. Remote Sens., 39, 492505, doi:10.1109/36.911108.

    • Search Google Scholar
    • Export Citation
  • Senet, C. M., , Seemann J. , , Flampouris S. , , and Ziemer F. , 2008: Determination of bathymetric and current maps by the method DiSC based on the analysis of nautical X-band radar image sequences of the sea surface. IEEE Trans. Geosci. Remote Sens., 46, 22672279, doi:10.1109/TGRS.2008.916474.

    • Search Google Scholar
    • Export Citation
  • Shuchman, R., 1979: The feasibility of measurement of ocean current detection using SAR data. Proceedings of the Thirteenth International Symposium on Remote Sensing of the Environment, IEEE, 93103.

  • Stewart, R. H., , and Joy J. W. , 1974: HF radio measurements of surface currents. Deep-Sea Res. Oceanogr. Abstr., 21, 10391049, doi:10.1016/0011-7471(74)90066-7.

    • Search Google Scholar
    • Export Citation
  • Teague, C. C., , Vesecky J. F. , , and Hallock Z. R. , 2001: A comparison of multifrequency HF radar and ADCP measurements of near-surface currents during COPE-3. IEEE J. Oceanic Eng., 26, 399405, doi:10.1109/48.946513.

    • Search Google Scholar
    • Export Citation
  • Terrill, E., and Coauthors, 2006: Data management and real-time distribution for HF-radar national network. OCEANS 2006, Boston, MA, IEEE, 060331-220, doi:10.1109/OCEANS.2006.306883.

  • Trizna, D., , and Xu L. , 2006: Target classification and remote sensing of ocean current shear using a dual-use multifrequency HF radar. IEEE J. Oceanic Eng., 31, 904918, doi:10.1109/JOE.2006.886198.

    • Search Google Scholar
    • Export Citation
  • Twomey, S., 1977: Introduction to the Mathematics of Inversion in Remote Sensing and Indirect Measurements. Dover Publications, 237 pp.

  • Weeks, W. T., 1966: Numerical inversion of Laplace transforms using Laguerre functions. J. Assoc. Comput. Mach., 13, 419426, doi:10.1145/321341.321351.

    • Search Google Scholar
    • Export Citation
  • Wunsch, C., 1996: The Ocean Circulation Inverse Problem. Cambridge University Press, 442 pp.

  • Young, I. R., , Rosenthal W. , , and Ziemer F. , 1985: A three-dimensional analysis of marine radar images for the determination of ocean wave directionality and surface currents. J. Geophys. Res., 90, 10491059, doi:10.1029/JC090iC01p01049.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 32 32 5
PDF Downloads 32 32 9

The Development of an Inversion Technique to Extract Vertical Current Profiles from X-Band Radar Observations

View More View Less
  • 1 Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California
© Get Permissions
Restricted access

Abstract

The influence of wave–current interactions on time series of marine X-band radar backscatter maps at the mouth of the Columbia River (MCR) near Astoria, Oregon, is examined. The energetic wave environment at the MCR, coupled with the strong tidally forced currents, provides a unique test environment to explore the limitations in accurately determining the magnitude and vertical structure of upper-ocean currents from wavefield measurements. Direct observation in time and space of the wave-induced radar backscatter and supporting acoustic Doppler current profiler (ADCP) current measurements provide a rich dataset for investigating how currents shift the observed wave dispersion relationship. First, current extraction techniques that assume a specific current–depth profile are tested against ADCP measurements. These constrained solutions prove to have inaccuracies because the models do not properly account for vertical shear. A forward solution using measured current profiles to predict the wavenumber–Doppler shift relationship for the range of ocean waves sensed by the radar is introduced. This approach confirms the ocean wavefield is affected by underlying vertical current shear. Finally, a new inversion method is developed to extract current profiles from the wavenumber-dependent Doppler shift observations. The success of the inversion model is shown to be sensitive to the range of wavenumbers spanned by observed Doppler shifts, with skill exceeding 0.8 when wavenumbers span more than 0.1 rad m−1. This agreement when observations successfully capture the broadband wavefield suggests the X-band backscatter is a viable means of remotely estimating current shear.

Corresponding author address: Jeffrey Campana, Scripps Institution of Oceanography, University of California, 9500 Gilman Drive, M/C 0214, La Jolla, CA 92093-0214. E-mail: jcampana@ucsd.edu

Abstract

The influence of wave–current interactions on time series of marine X-band radar backscatter maps at the mouth of the Columbia River (MCR) near Astoria, Oregon, is examined. The energetic wave environment at the MCR, coupled with the strong tidally forced currents, provides a unique test environment to explore the limitations in accurately determining the magnitude and vertical structure of upper-ocean currents from wavefield measurements. Direct observation in time and space of the wave-induced radar backscatter and supporting acoustic Doppler current profiler (ADCP) current measurements provide a rich dataset for investigating how currents shift the observed wave dispersion relationship. First, current extraction techniques that assume a specific current–depth profile are tested against ADCP measurements. These constrained solutions prove to have inaccuracies because the models do not properly account for vertical shear. A forward solution using measured current profiles to predict the wavenumber–Doppler shift relationship for the range of ocean waves sensed by the radar is introduced. This approach confirms the ocean wavefield is affected by underlying vertical current shear. Finally, a new inversion method is developed to extract current profiles from the wavenumber-dependent Doppler shift observations. The success of the inversion model is shown to be sensitive to the range of wavenumbers spanned by observed Doppler shifts, with skill exceeding 0.8 when wavenumbers span more than 0.1 rad m−1. This agreement when observations successfully capture the broadband wavefield suggests the X-band backscatter is a viable means of remotely estimating current shear.

Corresponding author address: Jeffrey Campana, Scripps Institution of Oceanography, University of California, 9500 Gilman Drive, M/C 0214, La Jolla, CA 92093-0214. E-mail: jcampana@ucsd.edu
Save