• Barnes, S. L., 1964: A technique for maximizing details in numerical weather map analysis. J. Appl. Meteor., 3, 396409, doi:10.1175/1520-0450(1964)003<0396:ATFMDI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Blumen, W., 1978: Uniform potential vorticity flow. Part I: Theory of wave interactions and two-dimensional turbulence. J. Atmos. Sci., 35, 774783, doi:10.1175/1520-0469(1978)035<0774:UPVFPI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Callies, J., , and Ferrari R. , 2013: Interpreting energy and tracer spectra of upper-ocean turbulence in the submesoscale range (1–200 km). J. Phys. Oceanogr., 43, 24562474, doi:10.1175/JPO-D-13-063.1.

    • Search Google Scholar
    • Export Citation
  • Callies, J., , Ferrari R. , , Klymak J. M. , , and Gula J. , 2015: Seasonality in submesoscale turbulence. Nat. Commun., 6, 6862, doi:10.1038/ncomms7862.

    • Search Google Scholar
    • Export Citation
  • Capet, X., , McWilliams J. C. , , Molemaker M. J. , , and Shchepetkin A. F. , 2008: Mesoscale to submesoscale transition in the California Current System. Part II: Frontal processes. J. Phys. Oceanogr., 38, 4464, doi:10.1175/2007JPO3672.1.

    • Search Google Scholar
    • Export Citation
  • Cayula, J.-F., , and Cornillon P. , 1992: Edge detection algorithm for SST images. J. Atmos. Oceanic Technol., 9, 6780, doi:10.1175/1520-0426(1992)009<0067:EDAFSI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Cole, S. T., , and Rudnick D. L. , 2012: The spatial distribution and annual cycle of upper ocean thermohaline structure. J. Geophys. Res., 117, C02027, doi:10.1029/2011JC007033.

    • Search Google Scholar
    • Export Citation
  • Cornillon, P. C., , and Stramma L. , 1985: The distribution of diurnal sea surface warming events in the western Sargasso Sea. J. Geophys. Res., 90, 11 81111 815, doi:10.1029/JC090iC06p11811.

    • Search Google Scholar
    • Export Citation
  • D’Asaro, E., , Lee C. , , Rainville L. , , Harcourt R. , , and Thomas L. , 2011: Enhanced turbulence and energy dissipation at ocean fronts. Science, 332, 318322, doi:10.1126/science.1201515.

    • Search Google Scholar
    • Export Citation
  • Deschamps, P. Y., , Frouin R. , , and Wald L. , 1981: Satellite determination of the mesoscale variability of the sea surface temperature. J. Phys. Oceanogr., 11, 864870, doi:10.1175/1520-0485(1981)011<0864:SDOTMV>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Deschamps, P. Y., , Frouin R. , , and Crépon M. , 1984: Sea surface temperatures of the coastal zones of France observed by the HCMM satellite. J. Geophys. Res., 89, 81238149, doi:10.1029/JC089iC05p08123.

    • Search Google Scholar
    • Export Citation
  • Efron, B., , and Tibshirani R. , 1986: Bootstrap methods for standard errors, confidence intervals, and other measures of statistical accuracy. Stat. Sci., 1, 5475, doi:10.1214/ss/1177013815.

    • Search Google Scholar
    • Export Citation
  • Flagg, C. N., , Schwartze G. , , Gottlieb E. , , and Rossby T. , 1998: Operating an acoustic Doppler current profiler aboard a container vessel. J. Atmos. Oceanic Technol., 15, 257271, doi:10.1175/1520-0426(1998)015<0257:OAADCP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Fox-Kemper, B., and Coauthors, 2011: Parameterization of mixed layer eddies. III: Implementation and impact in global ocean climate simulations. Ocean Modell., 39, 6178, doi:10.1016/j.ocemod.2010.09.002.

    • Search Google Scholar
    • Export Citation
  • Frisch, U., 1995: Turbulence: The Legacy of A. N. Kolmogorov. Cambridge University Press, 296 pp.

  • Huang, Y., , Schmitt F. , , Lu Z. , , Fougairolles P. , , Gagne Y. , , and Liu Y. , 2010: Second-order structure function in fully developed turbulence. Phys. Rev., 82E, 26 31926 327, doi:10.1103/PhysRevE.82.026319.

    • Search Google Scholar
    • Export Citation
  • Kolodziejczyk, N., , Reverdin G. , , Boutin J. , , and Hernandez O. , 2015: Observation of the surface horizontal thermohaline variability at mesoscale to submesoscales in the north-eastern subtropical Atlantic. J. Geophys. Res. Oceans, 120, 25882600, doi:10.1002/2014JC010455.

    • Search Google Scholar
    • Export Citation
  • Lapeyre, G., , and Klein P. , 2006: Dynamics of the upper oceanic layers in terms of surface quasigeostrophy theory. J. Phys. Oceanogr., 36, 165176, doi:10.1175/JPO2840.1.

    • Search Google Scholar
    • Export Citation
  • Luce, D. L., , and Rossby T. , 2008: On the size and distribution of rings and coherent vortices in the Sargasso Sea. J. Geophys. Res., 113, C05011, doi:10.1029/2007JC004171.

    • Search Google Scholar
    • Export Citation
  • McCaffrey, K., , Fox-Kemper B. , , and Forget G. , 2015: Estimates of ocean macroturbulence: Structure function and spectral slope from Argo profiling floats. J. Phys. Oceanogr., 45, 17731793, doi:10.1175/JPO-D-14-0023.1.

    • Search Google Scholar
    • Export Citation
  • Molemaker, M. J., , McWilliams J. C. , , and Capet X. , 2010: Balanced and unbalanced routes to dissipation in an equilibrated Eady flow. J. Fluid Mech., 654, 3563, doi:10.1017/S0022112009993272.

    • Search Google Scholar
    • Export Citation
  • Obenour, K. M., 2013: Temporal trends in global sea surface temperature fronts. M.S. thesis, Dept. of Oceanography, University of Rhode Island, 46 pp.

  • Rudnick, D. L., , and Ferrari R. , 1999: Compensation of the horizontal temperature and salinity gradient in the ocean mixed layer. Science, 283, 526529, doi:10.1126/science.283.5401.526.

    • Search Google Scholar
    • Export Citation
  • Samelson, R. M., , and Paulson C. A. , 1988: Towed thermistor chain observations of fronts in the subtropical North Pacific. J. Geophys. Res., 93, 22372246, doi:10.1029/JC093iC03p02237.

    • Search Google Scholar
    • Export Citation
  • Schueler, C. F., , Clement J. E. , , Ardanuy P. E. , , Welsch C. , , DeLuccia F. , , and Swenson H. , 2002: NPOESS VIIRS sensor design overview. Earth Observing Systems VI, W. L. Barnes, Ed., International Society for Optical Engineering (SPIE Proceedings, Vol. 4483), 11–23, doi:10.1117/12.453451.

  • Schueler, C. F., , Lee T. F. , , and Miller S. D. , 2013: VIIRS constant spatial-resolution advantages. Int. J. Remote Sens., 34, 57615777, doi:10.1080/01431161.2013.796102.

    • Search Google Scholar
    • Export Citation
  • Seaman, C., , Hillger D. , , Kopp T. , , Williams R. , , Miller S. , , and Lindsey D. , 2014: Visible Infrared Imaging Radiometer Suite (VIIRS) imagery environmental data record (EDR) user’s guide. Version 1.1, NOAA Tech. Rep., 35 pp.

  • Thomas, L. N., , Tandon A. , , and Mahadevan A. , 2008: Submesoscale processes and dynamics. Ocean Modeling in an Eddying Regime, M. W. Hecht and H. Hasumi, Eds., Geophys. Monogr., Vol. 177, Amer. Geophys. Union, 17–38, doi:10.1029/177GM04.

  • Todd, R. E., , Rudnick D. L. , , Mazloff M. R. , , Davis R. E. , , and Cornuelle B. D. , 2011: Poleward flows in the southern California Current System: Glider observations and numerical simulation. J. Geophys. Res., 116, C02026, doi:10.1029/2010JC006536.

    • Search Google Scholar
    • Export Citation
  • Wald, L., 1983: Some examples of the use of structure functions in the analysis of satellite images of the ocean. Photogramm. Eng. Remote Sensing, 55, 14871490.

    • Search Google Scholar
    • Export Citation
  • Wang, D.-P., , Flagg C. N. , , Donohue K. , , and Rossby H. T. , 2010: Wavenumber spectrum in the Gulf Stream from shipboard ADCP observations and comparison with altimetry measurements. J. Phys. Oceanogr., 40, 840844, doi:10.1175/2009JPO4330.1.

    • Search Google Scholar
    • Export Citation
  • Webb, E. K., 1964: Ratio of spectrum and structure-function constants in the inertial subrange. Quart. J. Roy. Meteor. Soc., 90, 344345, doi:10.1002/qj.49709038520.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 58 58 17
PDF Downloads 34 34 9

Evaluation of Thermosalinograph and VIIRS Data for the Characterization of Near-Surface Temperature Fields

View More View Less
  • 1 Graduate School of Oceanography, University of Rhode Island, Narragansett, Rhode Island
  • 2 L'Institut Mines-Télécom, Télécom Bretagne, UMR Lab-STICC, Brest, France
  • 3 University of California, Davis, Davis, California
© Get Permissions
Restricted access

Abstract

Detailed understanding of submesoscale processes and their role in global ocean circulation is constrained, in part, by the lack of global observational datasets of sufficiently high resolution. Here, the potential of thermosalinograph (TSG) and Visible Infrared Imager Radiometer Suite (VIIRS) data is evaluated, to characterize the submesoscale structure of the near-surface temperature fields in the Gulf Stream and Sargasso Sea. In addition to spectral density, the structure function is considered, a statistical measure less susceptible to data gaps, which are common in the satellite-derived fields. The structure function is found to be an unreliable estimator, especially for steep spectral slopes, nominally between 2 and 3, typical of the Gulf Stream and Sargasso regions. A quality-control threshold is developed based on the number and size of gaps to ensure reliable spectral density estimates. Analysis of the impact of gaps in the VIIRS data on the spectra shows that both the number of missing values and the size of gaps affect the results, and that the steeper the spectral slope the more significant the impact. Furthermore, the TSG, with a nominal resolution of 75 m, captures the spectral characteristics of the fields in both regions down to scales substantially smaller than 1 km, while the VIIRS fields, with a nominal resolution of 750 m, reproduce the spectra well down to scales of about 20 km in the Sargasso Sea and 5 km in the Gulf Stream. The scales at which the VIIRS and TSG spectra diverge are thought to be determined by sensor and retrieval noise.

Denotes Open Access content.

Corresponding author address: Fabian Schloesser, Graduate School of Oceanography, University of Rhode Island, 215 S. Ferry Rd., Narragansett, RI 02882. E-mail: schloess@uri.edu

Abstract

Detailed understanding of submesoscale processes and their role in global ocean circulation is constrained, in part, by the lack of global observational datasets of sufficiently high resolution. Here, the potential of thermosalinograph (TSG) and Visible Infrared Imager Radiometer Suite (VIIRS) data is evaluated, to characterize the submesoscale structure of the near-surface temperature fields in the Gulf Stream and Sargasso Sea. In addition to spectral density, the structure function is considered, a statistical measure less susceptible to data gaps, which are common in the satellite-derived fields. The structure function is found to be an unreliable estimator, especially for steep spectral slopes, nominally between 2 and 3, typical of the Gulf Stream and Sargasso regions. A quality-control threshold is developed based on the number and size of gaps to ensure reliable spectral density estimates. Analysis of the impact of gaps in the VIIRS data on the spectra shows that both the number of missing values and the size of gaps affect the results, and that the steeper the spectral slope the more significant the impact. Furthermore, the TSG, with a nominal resolution of 75 m, captures the spectral characteristics of the fields in both regions down to scales substantially smaller than 1 km, while the VIIRS fields, with a nominal resolution of 750 m, reproduce the spectra well down to scales of about 20 km in the Sargasso Sea and 5 km in the Gulf Stream. The scales at which the VIIRS and TSG spectra diverge are thought to be determined by sensor and retrieval noise.

Denotes Open Access content.

Corresponding author address: Fabian Schloesser, Graduate School of Oceanography, University of Rhode Island, 215 S. Ferry Rd., Narragansett, RI 02882. E-mail: schloess@uri.edu
Save