• Bechini, R., , and Chandrasekar V. , 2015: A semisupervised robust hydrometeor classification method for dual-polarization radar applications. J. Atmos. Oceanic Technol., 32, 2247, doi:10.1175/JTECH-D-14-00097.1.

    • Search Google Scholar
    • Export Citation
  • Berenguer, M., , Sempere-Torres D. , , Corral C. , , and Sánchez-Diezma R. , 2006: A fuzzy logic technique for identifying nonprecipitating echoes in radar scans. J. Atmos. Oceanic Technol., 23, 11571180, doi:10.1175/JTECH1914.1.

    • Search Google Scholar
    • Export Citation
  • Chandrasekar, V., , Keränen R. , , Lim S. , , and Moisseev D. , 2013: Recent advances in classification of observations from dual polarization weather radars. Atmos. Res., 119, 97111, doi:10.1016/j.atmosres.2011.08.014.

    • Search Google Scholar
    • Export Citation
  • Giangrande, S. E., , and Ryzhkov A. V. , 2008: Estimation of rainfall based on the results of polarimetric echo classification. J. Appl. Meteor. Climatol., 47, 24452462, doi:10.1175/2008JAMC1753.1.

    • Search Google Scholar
    • Export Citation
  • Gourley, J. J., , Tabary P. , , and du Chatelet J. P. , 2007: A fuzzy logic algorithm for the separation of precipitating from nonprecipitating echoes using polarimetric radar observations. J. Atmos. Oceanic Technol., 24, 14391451, doi:10.1175/JTECH2035.1.

    • Search Google Scholar
    • Export Citation
  • Kumjian, M. R., 2013a: Principles and applications of dual-polarization weather radar. Part I: Description of the polarimetric radar variables. J. Oper. Meteor., 1, 226242, doi:10.15191/nwajom.2013.0119.

    • Search Google Scholar
    • Export Citation
  • Kumjian, M. R., 2013b: Principles and applications of dual-polarization weather radar. Part II: Warm- and cold-season applications. J. Oper. Meteor., 1, 243264, doi:10.15191/nwajom.2013.0120.

    • Search Google Scholar
    • Export Citation
  • Kumjian, M. R., 2013c: Principles and applications of dual-polarization weather radar. Part III: Description of the polarimetric radar variables. J. Oper. Meteor., 1, 226242, doi:10.15191/nwajom.2013.0119.

    • Search Google Scholar
    • Export Citation
  • Lakshmanan, V., , Karstens C. , , Krause J. , , and Tang L. , 2014: Quality control of weather radar data using polarimetric variables. J. Atmos. Oceanic Technol., 31, 12341249, doi:10.1175/JTECH-D-13-00073.1.

    • Search Google Scholar
    • Export Citation
  • Lakshmanan, V., , Karstens C. , , Krause J. , , Elmore K. , , Ryzhkov A. , , and Berkseth S. , 2015: Which polarimetric variables are important for weather/no-weather discrimination? J. Atmos. Oceanic Technol., 32, 12091223, doi:10.1175/JTECH-D-13-00205.1.

    • Search Google Scholar
    • Export Citation
  • Melnikov, V. M., , and Zrnić D. S. , 2007: Autocorrelation and cross-correlation estimators of polarimetric variables. J. Atmos. Oceanic Technol., 24, 13371350, doi:10.1175/JTECH2054.1.

    • Search Google Scholar
    • Export Citation
  • Park, H., , Ryzhkov A. , , Zrnić D. , , and Kim K.-E. , 2009: The hydrometeor classification algorithm for the polarimetric WSR-88D: Description and application to an MCS. Wea. Forecasting, 24, 730748, doi:10.1175/2008WAF2222205.1.

    • Search Google Scholar
    • Export Citation
  • Ryzhkov, A. V., 2007: The impact of beam broadening on the quality of radar polarimetric data. J. Atmos. Oceanic Technol., 24, 729744, doi:10.1175/JTECH2003.1.

    • Search Google Scholar
    • Export Citation
  • Ryzhkov, A. V., , Giangrande S. , , and Schuur T. , 2005: Rainfall estimation with a polarimetric prototype of WSR-88D. J. Appl. Meteor., 44, 502515, doi:10.1175/JAM2213.1.

    • Search Google Scholar
    • Export Citation
  • Ryzhkov, A. V., , Kumjian M. , , Ganson S. , , and Zhang P. , 2013: Polarimetric radar characteristics of melting hail. Part II: Practical implications. J. Appl. Meteor. Climatol., 52, 28712886, doi:10.1175/JAMC-D-13-074.1.

    • Search Google Scholar
    • Export Citation
  • Straka, J. M., , Zrnić D. S. , , and Ryzhkov A. V. , 2000: Bulk hydrometeor classification and quantification using polarimetric radar data: Synthesis of relations. J. Appl. Meteor., 39, 13411372, doi:10.1175/1520-0450(2000)039<1341:BHCAQU>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Tang, L., , Zhang J. , , Langston C. , , Krause J. , , Howard K. , , and Lakshmanan V. , 2014: A physically based precipitation–nonprecipitation radar echo classifier using polarimetric and environmental data in a real-time national system. Wea. Forecasting, 29, 11061119, doi:10.1175/WAF-D-13-00072.1.

    • Search Google Scholar
    • Export Citation
  • Wang, Y., , and Chandrasekar V. , 2009: Algorithm for estimation of the specific differential phase. J. Atmos. Oceanic Technol., 26, 25652578, doi:10.1175/2009JTECHA1358.1.

    • Search Google Scholar
    • Export Citation
  • Wen, G., , Protat A. , , May P. T. , , Wang X. , , and Moran W. , 2015: A cluster-based method for hydrometeor classification using polarimetric variables. Part I: Interpretation and analysis. J. Atmos. Oceanic Technol., 32, 13201340, doi:10.1175/JTECH-D-13-00178.1.

    • Search Google Scholar
    • Export Citation
  • Zrnić, D., , and Ryzhkov A. , 1999: Polarimetry for weather surveillance radars. Bull. Amer. Meteor. Soc., 80, 389406, doi:10.1175/1520-0477(1999)080<0389:PFWSR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Zrnić, D., , Bringi V. , , Balakrishnan N. , , Aydin K. , , Chandrasekar V. , , and Hubbert J. , 1993: Polarimetric measurements in a severe hailstorm. Mon. Wea. Rev., 121, 22232238, doi:10.1175/1520-0493(1993)121<2223:PMIASH>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Zrnić, D., , Ryzhkov A. , , Straka J. , , Liu Y. , , and Vivekanandan J. , 2001: Testing a procedure for automatic classification of hydrometeor types. J. Atmos. Oceanic Technol., 18, 892913, doi:10.1175/1520-0426(2001)018<0892:TAPFAC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 37 37 8
PDF Downloads 36 36 7

A Simple Algorithm to Discriminate between Meteorological and Nonmeteorological Radar Echoes

View More View Less
  • 1 Cooperative Institute for Mesoscale Meteorological Studies, University of Oklahoma, and NOAA/OAR/National Severe Storms Laboratory, Norman, Oklahoma
© Get Permissions
Restricted access

Abstract

Discriminating between meteorological and nonmeteorological radar returns is necessary for a number of radar applications, including hydrometeor classification, quantitative precipitation estimation (QPE), and the computation of specific differential phase KDP. The algorithm proposed, MetSignal, uses polarimetric radar data and is simple by design, allowing users to adjust its performance based on the location’s specific needs. The MetSignal algorithm is a fuzzy logic technique with a few postprocessing rules and has been selected for implementation on the WSR-88D network in the United States.

Corresponding author address: John Krause, RRDD, NSSL, 120 David L. Boren Blvd., Norman, OK 73072-7319. E-mail: john.krause@noaa.gov

Abstract

Discriminating between meteorological and nonmeteorological radar returns is necessary for a number of radar applications, including hydrometeor classification, quantitative precipitation estimation (QPE), and the computation of specific differential phase KDP. The algorithm proposed, MetSignal, uses polarimetric radar data and is simple by design, allowing users to adjust its performance based on the location’s specific needs. The MetSignal algorithm is a fuzzy logic technique with a few postprocessing rules and has been selected for implementation on the WSR-88D network in the United States.

Corresponding author address: John Krause, RRDD, NSSL, 120 David L. Boren Blvd., Norman, OK 73072-7319. E-mail: john.krause@noaa.gov
Save