• Abarca, S. F., , Corbosiero K. L. , , and Galarneau T. J. , 2010: An evaluation of the Worldwide Lightning Location Network (WWLLN) using the National Lightning Detection Network (NLDN) as ground truth. J. Geophys. Res., 115, doi:10.1029/2009JD013411.

    • Search Google Scholar
    • Export Citation
  • Anderson, G., , and Klugmann D. , 2014: A European lightning density analysis using 5 years of ATDnet data. Nat. Hazards Earth Syst. Sci., 14, 815829, doi:10.5194/nhess-14-815-2014.

    • Search Google Scholar
    • Export Citation
  • Bennett, A. J., , Gaffard C. , , Nash J. , , Callaghan G. , , and Atkinson N. C. , 2011: The effect of modal interference on VLF long-range lightning location networks using the waveform correlation technique. J. Atmos. Oceanic Technol., 28, 9931006, doi:10.1175/2011JTECHA1527.1.

    • Search Google Scholar
    • Export Citation
  • Betz, H.-D., and Coauthors, 2008: Detection of in-cloud lightning with VLF/LF and VHF networks for studies of the initial discharge phase. Geophys. Res. Lett., 35, L23802, doi:10.1029/2008GL035820.

    • Search Google Scholar
    • Export Citation
  • Betz, H.-D., , Schmidt K. , , Laroche P. , , Blanchet P. , , Oettinger W. P. , , Defer E. , , Dziewit Z. , , and Konarski J. , 2009: LINET—An international lightning detection network in Europe. Atmos. Res., 91, 564573, doi:10.1016/j.atmosres.2008.06.012.

    • Search Google Scholar
    • Export Citation
  • Biagi, C. J., , Cummins K. L. , , Kehoe K. E. , , and Krider E. P. , 2007: National Lightning Detection Network (NLDN) performance in southern Arizona, Texas, and Oklahoma in 2003–2004. J. Geophys. Res., 112, D05208, doi:10.1029/2006JD007341.

    • Search Google Scholar
    • Export Citation
  • Biron, D., , De Leonibus L. , , Laquale P. , , Labate D. , , Zauli F. , , and Melfi D. , 2008: Simulation of Meteosat Third Generation-Lightning Imager through Tropical Rainfall Measuring Mission: Lightning Imaging Sensor data. Remote Sensing System Engineering, P. E. Ardanuy and J. J. Puschell, Eds., International Society for Optical Engineering (SPIE Proceedings, Vol. 7087), 708706, doi:10.1117/12.794764.

  • Chen, L., , Zhang Y. , , Lu W. , , Zheng D. , , Zhang Y. , , Chen S. , , and Huang Z. , 2012: Performance evaluation for a lightning location system based on observations of artificially triggered lightning and natural lightning flashes. J. Atmos. Oceanic Technol., 29, 18351844, doi:10.1175/JTECH-D-12-00028.1.

    • Search Google Scholar
    • Export Citation
  • Coquillat, S., , Defer E. , , Lambert D. , , Martin J.-M. , , Pinty J.-P. , , Pont V. , , and Prieur S. , 2015: SAETTA: Fine-scale observation of the total lightning activity in the framework of the CORSiCA atmospheric observatory. Geophysical Research Abstracts, Vol. 17, Abstract EGU2015-10123. [Available online at http://meetingorganizer.copernicus.org/EGU2015/EGU2015-10123.pdf.]

  • Cummins, K., , and Murphy M. , 2009: An overview of lightning locating systems: History, techniques, and data uses, with an in-depth look at the U.S. NLDN. IEEE Trans. Electromagn. Compat., 51, 499518, doi:10.1109/TEMC.2009.2023450.

    • Search Google Scholar
    • Export Citation
  • Defer, E., and Coauthors, 2015: An overview of the lightning and atmospheric electricity observations collected in southern France during the HYdrological cycle in Mediterranean EXperiment (HyMeX), Special Observation Period 1. Atmos. Meas. Tech., 8, 649669, doi:10.5194/amt-8-649-2015.

    • Search Google Scholar
    • Export Citation
  • Demetriades, N. W. S., , Murphy M. J. , , and Cramer J. A. , 2010: Validation of Vaisala’s Global Lightning Dataset (GLD360) over the continental United States. Extended abstracts, 21st Int. Lightning Detection Conf./Third Int. Lightning Meteorology Conf., Orlando, FL, Vaisala. [Available online at http://www.vaisala.com/Vaisala%20Documents/Scientific%20papers/6.Demetriades,%20Murphy,%20Cramer.pdf.]

  • Dentel, L. M., , da Rocha B. R. P. , , and de Souza J. R. S. , 2014: Evaluation of STARNET lightning detection performance in the Amazon region. Int. J. Remote Sens., 35, 115126, doi:10.1080/01431161.2013.862604.

    • Search Google Scholar
    • Export Citation
  • Diendorfer, G., 2010: LLS performance validation using lightning to towers. 21st Int. Lightning Detection Conf./Third Int. Lightning Meteorology Conf., Orlando, FL, Vaisala, [Available online at http://www.vaisala.com/VaisalaDocuments/Scientificpapers/1.Keynote-Diendorfer.pdf.]

  • Drobinski, J., and Coauthors, 2014: HyMeX: A 10-year multidisciplinary program on the Mediterranean water cycle. Bull. Amer. Meteor. Soc., 95, 10631082, doi:10.1175/BAMS-D-12-00242.1.

    • Search Google Scholar
    • Export Citation
  • Goodman, S. J., and Coauthors, 2013: The GOES-R Geostationary Lightning Mapper (GLM). Atmos. Res., 125126, 3449, doi:10.1016/j.atmosres.2013.01.006.

    • Search Google Scholar
    • Export Citation
  • Idone, V. P., , Davis D. A. , , Moore P. K. , , Wang Y. , , Henderson R. W. , , Ries M. , , and Jamason P. F. , 1998: Performance evaluation of the U.S. National Lightning Detection Network in eastern New York: 1. Detection efficiency. J. Geophys. Res., 103, 90459055, doi:10.1029/98JD00154.

    • Search Google Scholar
    • Export Citation
  • Jacobson, A. R., , Holzworth R. , , Harlin J. , , Dowden R. , , and Lay E. , 2006: Performance assessment of the World Wide Lightning Location Network (WWLLN), using the Los Alamos Sferic Array (LASA) as ground truth. J. Atmos. Oceanic Technol., 23, 10821092, doi:10.1175/JTECH1902.1.

    • Search Google Scholar
    • Export Citation
  • Jerauld, J., , Rakov V. A. , , Uman M. A. , , Rambo K. J. , , Jordan D. M. , , Cummins K. L. , , and Cramer J. A. , 2005: An evaluation of the performance characteristics of the U.S. National Lightning Detection Network in Florida using rocket-triggered lightning. J. Geophys. Res. Atmospheres, 110, doi:10.1029/2005JD005924.

    • Search Google Scholar
    • Export Citation
  • Krehbiel, P. R., , Thomas R. J. , , Rison W. , , Hamlin T. , , Harlin J. , , and Davis M. , 2000: GPS-based mapping system reveals lightning inside storms. Eos, Trans. Amer. Geophys. Union, 81, 2125, doi:10.1029/00EO00014.

    • Search Google Scholar
    • Export Citation
  • Lafkovici, A., , Hussein A. , , Janischewskyj W. , , and Cummins K. , 2008: Evaluation of the performance characteristics of the North American Lightning Detection Network based on tall-structure lightning. IEEE Trans. Electromagn. Compat., 50, 630641, doi:10.1109/TEMC.2008.927922.

    • Search Google Scholar
    • Export Citation
  • Lagouvardos, K., , Kotroni V. , , Betz H.-D. , , and Schmidt K. , 2009: A comparison of lightning data provided by ZEUS and LINET networks over Western Europe. Nat. Hazard Earth Sys. Sci., 9, 17131717, doi:10.5194/nhess-9-1713-2009.

    • Search Google Scholar
    • Export Citation
  • Lay, E. H., , Holzworth R. H. , , Rodger C. J. , , Thomas J. N. , , Pinto O. Jr., , and Dowden R. L. , 2004: WWLL global lightning detection system: Regional validation study in Brazil. Geophys. Res. Lett., 31, L03102, doi:10.1029/2003GL018882.

    • Search Google Scholar
    • Export Citation
  • Murphy, M. J., , Nag A. , , Cramer J. A. , , and Pifer A. E. , 2014: Enhanced cloud lightning performance of the U.S. National Lightning Detection Network following the 2013 upgrade. Extended abstracts, 23rd Int. Lightning Detection Conf./Fifth Int. Lightning Meteorology Conf., Tucson, AZ, Vaisala. [Available online at http://www.vaisala.com/Vaisala%20Documents/Scientific%20papers/2014%20ILDC%20ILMC/ILDC-Wednesday/Murphy%20et%20al-Improved%20NLDN%20Performance%20after%202013%20Upgrade-2014-ILDC-ILMC.pdf.]

  • Nag, A., , DeCarlo B. A. , , and Rakov V. A. , 2009: Analysis of microsecond- and submicrosecond-scale electric field pulses produced by cloud and ground lightning discharges. Atmos. Res., 91, 316325, doi:10.1016/j.atmosres.2008.01.014.

    • Search Google Scholar
    • Export Citation
  • Nag, A., and Coauthors, 2011: Evaluation of U.S. National Lightning Detection Network performance characteristics using rocket-triggered lightning data acquired in 2004–2009. J. Geophys. Res., 116, D02123, doi:10.1029/2010JD014929.

    • Search Google Scholar
    • Export Citation
  • Nag, A., , Murphy M. J. , , Schulz W. , , and Cummins K. L. , 2015: Lightning locating systems: Insights on characteristics and validation techniques. Earth Space Sci., 2, doi:10.1002/2014EA000051.

    • Search Google Scholar
    • Export Citation
  • Poelman, D. R., , Honoré F. , , Anderson G. , , and Pedeboy S. , 2013a: Comparing a regional, subcontinental, and long-range lightning location system over the Benelux and France. J. Atmos. Oceanic Technol., 30, 23942405, doi:10.1175/JTECH-D-12-00263.1.

    • Search Google Scholar
    • Export Citation
  • Poelman, D. R., , Schulz W. , , and Vergeiner C. , 2013b: Performance characteristics of distinct lightning detection networks covering Belgium. J. Atmos. Oceanic Technol., 30, 942951, doi:10.1175/JTECH-D-12-00162.1.

    • Search Google Scholar
    • Export Citation
  • Prentice, S. A., , and Mackerras D. , 1977: The ratio of cloud to cloud-ground lightning flashes in thunderstorms. J. Appl. Meteor., 16, 545550, doi:10.1175/1520-0450(1977)016<0545:TROCTC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Rakov, V. A., 2013: Electromagnetic methods of lightning detection. Surv. Geophys., 34, 731753, doi:10.1007/s10712-013-9251-1.

  • Rakov, V. A., , and Uman M. A. , 2003: Lightning: Physics and Effects. Cambridge University Press, 687 pp.

  • Rison, W., 2012: HyMeX Lightning Mapping Array. New Mexico Institute of Mining and Technology, accessed 24 August 2016, doi:10.6096/MISTRALS-HYMEX.LIGHTNING.LMA.

  • Rison, W., , Thomas R. J. , , Krehbiel P. R. , , Hamlin T. , , and Harlin J. , 1999: A GPS-based three-dimensional lightning mapping system: Initial observations in central New Mexico. Geophys. Res. Lett., 26, 35733576, doi:10.1029/1999GL010856.

    • Search Google Scholar
    • Export Citation
  • Rodger, C. J., , Werner S. , , Brundell J. B. , , Lay E. H. , , Thomson N. R. , , Holzworth R. H. , , and Dowden R. L. , 2006: Detection efficiency of the VLF World-Wide Lightning Location Network (WWLLN): Initial case study. Ann. Geophys., 24, 31973214, doi:10.5194/angeo-24-3197-2006.

    • Search Google Scholar
    • Export Citation
  • Said, R. K., , Inan U. S. , , and Cummins K. L. , 2010: Long-range lightning geolocation using a VLF radio atmospheric waveform bank. J. Geophys. Res., 115, D23108, doi:10.1029/2010JD013863.

    • Search Google Scholar
    • Export Citation
  • Schulz, W., , Diendorfer G. , , Pedeboy S. , , and Poelman D. R. , 2015: The European lightning location system EUCLID—Part 1: Performance analysis and validation. Nat. Hazards Earth Syst. Sci., 16, 595605, doi:10.5194/nhess-16-595-2016.

    • Search Google Scholar
    • Export Citation
  • van der Velde, O. A., , Montanyà J. , , Romero D. , , Pineda N. , , and Soula S. , 2012: Ebro Lightning Mapping Array: Sprite-producing lightning and ground-to-cloud-to-ground flashes. Geophysical Research Abstracts, Vol. 14, Abstract EGU2012-6541. [Available online at http://meetingorganizer.copernicus.org/EGU2012/EGU2012-6541.pdf.]

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 34 34 10
PDF Downloads 24 24 12

ATDnet Detection Efficiency and Cloud Lightning Detection Characteristics from Comparison with the HyLMA during HyMeX SOP1

View More View Less
  • 1 Met Office, Exeter, United Kingdom
© Get Permissions
Restricted access

Abstract

This study provides the first comprehensive quantitative detection efficiency (DE) estimation of the Met Office long-range very low-frequency (VLF) lightning location system, the Arrival Time Difference Network ATDnet, with a focus on cloud flash detection. ATDnet uses sensors in and around Europe to detect lightning in Europe, northern Africa, and northern parts of the Atlantic.

In the present paper, ATDnet is validated against the Hydrological Cycle in the Mediterranean Experiment (HyMeX) Lightning Mapping Array (HyLMA) deployed in the south of France in autumn 2012 as a part of the HyMeX project Special Observation Period 1 (SOP1). Three storms (on 5, 11, and 25 September 2012) were selected for this study, as their activity was sufficient to provide good statistics but also low enough to avoid ambiguous situations due to temporally overlapping flashes.

The overall ATDnet flash DE was approximately 89% for the 281 ground flashes [cloud to ground (CG)] and 24% for the 1324 cloud flashes [inter/intracloud (IC)] during the storms. It was also demonstrated that variations in cloud flash characteristics (e.g., flash vertical extent) have a significant impact on DE between and during the studied storms.

Corresponding author address: Sven-Erik Enno, Met Office, FitzRoy Road, Exeter EX1 3PB, United Kingdom. E-mail: sven-erik.enno@metoffice.gov.uk

Abstract

This study provides the first comprehensive quantitative detection efficiency (DE) estimation of the Met Office long-range very low-frequency (VLF) lightning location system, the Arrival Time Difference Network ATDnet, with a focus on cloud flash detection. ATDnet uses sensors in and around Europe to detect lightning in Europe, northern Africa, and northern parts of the Atlantic.

In the present paper, ATDnet is validated against the Hydrological Cycle in the Mediterranean Experiment (HyMeX) Lightning Mapping Array (HyLMA) deployed in the south of France in autumn 2012 as a part of the HyMeX project Special Observation Period 1 (SOP1). Three storms (on 5, 11, and 25 September 2012) were selected for this study, as their activity was sufficient to provide good statistics but also low enough to avoid ambiguous situations due to temporally overlapping flashes.

The overall ATDnet flash DE was approximately 89% for the 281 ground flashes [cloud to ground (CG)] and 24% for the 1324 cloud flashes [inter/intracloud (IC)] during the storms. It was also demonstrated that variations in cloud flash characteristics (e.g., flash vertical extent) have a significant impact on DE between and during the studied storms.

Corresponding author address: Sven-Erik Enno, Met Office, FitzRoy Road, Exeter EX1 3PB, United Kingdom. E-mail: sven-erik.enno@metoffice.gov.uk
Save