• Awaka, J., , Iguchi T. , , Kumagai H. , , and Okamoto K. , 1997: Rain type classification algorithm for TRMM precipitation radar. IGARSS’97: Remote Sensing; A Scientific Vision for Sustainable Development, T. I. Stein, Ed., Vol. 4, IEEE, 1633–1635, doi:10.1109/IGARSS.1997.608993.

  • Awaka, J., , Iguchi T. , , and Okamoto K. , 1998: Early results on rain type classification by the Tropical Rainfall Measuring Mission (TRMM) Precipitation Radar. Proc. Eighth URSI Commission F Open Symp., Aveiro, Portugal, Union Radio Scientifique Internationale, 143146.

  • Awaka, J., , Iguchi T. , , and Okamoto K. , 2007: Rain type classification algorithm. Measuring Precipitation from Space: EURAINSAT and the Future, V. Levizzani, P. Bauer, and F. J. Turk, Eds., Advances in Global Change Research, Vol. 28, Springer, 213–224.

  • Awaka, J., , Iguchi T. , , and Okamoto K. , 2009: TRMM PR standard algorithm 2A23 and its performance on bright band detection. J. Meteor. Soc. Japan, 87A, 3152, doi:10.2151/jmsj.87A.31.

    • Search Google Scholar
    • Export Citation
  • Battan, L. J., 1973: Radar Observation of the Atmosphere. University of Chicago Press, 324 pp.

  • Fabry, F., , and Zawadzki I. , 1995: Long-term radar observations of the melting layer of precipitation and their interpretation. J. Atmos. Sci., 52, 838851, doi:10.1175/1520-0469(1995)052<0838:LTROOT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Funk, A., , Schumacher C. , , and Awaka J. , 2013: Analysis of rain classifications over the tropics by version 7 of the TRMM PR 2A23 algorithm. J. Meteor. Soc. Japan, 91, 257272, doi:10.2151/jmsj.2013-302.

    • Search Google Scholar
    • Export Citation
  • Klaassen, W., 1988: Radar observations and simulation of the melting layer of precipitation. J. Atmos. Sci., 45, 37413753, doi:10.1175/1520-0469(1988)045<3741:ROASOT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kobayashi, S., , and Iguchi T. , 2003: Variable pulse repetition frequency for the Global Precipitation Measurement Project (GPM). IEEE Trans. Geosci. Remote Sens., 41, 17141718, doi:10.1109/TGRS.2003.813700.

    • Search Google Scholar
    • Export Citation
  • Kubota, T., and Coauthors, 2014: Evaluation of precipitation estimates by at-launch codes of GPM/DPR algorithms using synthetic data from TRMM/PR observations. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens., 7, 39313944, doi:10.1109/JSTARS.2014.2320960.

    • Search Google Scholar
    • Export Citation
  • Le, M., , and Chandrasekar V. , 2013a: Hydrometeor profile characterization method for Dual-Frequency Precipitation Radar onboard the GPM. IEEE Trans. Geosci. Remote Sens., 51, 36483658, doi:10.1109/TGRS.2012.2224352.

    • Search Google Scholar
    • Export Citation
  • Le, M., , and Chandrasekar V. , 2013b: Precipitation type classification method for Dual-Frequency Precipitation Radar (DPR) onboard the GPM. IEEE Trans. Geosci. Remote Sens., 51, 17841790, doi:10.1109/TGRS.2012.2205698.

    • Search Google Scholar
    • Export Citation
  • Liao, L., , and Meneghini R. , 2011: A study on the feasibility of dual-wavelength radar for identification of hydrometeor phases. J. Appl. Meteor. Climatol., 50, 449456, doi:10.1175/2010JAMC2499.1.

    • Search Google Scholar
    • Export Citation
  • Meneghini, R., , and Kozu T. , 1990: Spaceborne Weather Radar. Artech House, 199 pp.

  • Seto, S., , and Iguchi T. , 2011: Applicability of the iterative backward retrieval method for the GPM Dual-Frequency Precipitation Radar. IEEE Trans. Geosci. Remote Sens., 49, 18271838, doi:10.1109/TGRS.2010.2102766.

    • Search Google Scholar
    • Export Citation
  • Seto, S., , and Iguchi T. , 2015: Intercomparison of attenuation correction methods for the GPM Dual-Frequency Precipitation Radar. J. Atmos. Oceanic Technol., 32, 915926, doi:10.1175/JTECH-D-14-00065.1.

    • Search Google Scholar
    • Export Citation
  • Short, D. A., , and Nakamura K. , 2000: TRMM radar observations of shallow precipitation over the tropical oceans. J. Climatol., 13, 41074124, doi:10.1175/1520-0442(2000)013<4107:TROOSP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Steiner, M., , Houze R. A. Jr., , and Yuter S. , 1995: Climatological characterization of three-dimensional storm structure from operational radar and rain gauge data. J. Appl. Meteor., 34, 19782007, doi:10.1175/1520-0450(1995)034<1978:CCOTDS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Yuter, S. E., , and Houze R. A. Jr., 1997: Measurements of raindrop size distributions over the Pacific warm pool and implications for ZR relations. J. Appl. Meteor., 36, 847867, doi:10.1175/1520-0450(1997)036<0847:MORSDO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 106 106 35
PDF Downloads 84 84 25

Rain Type Classification Algorithm Module for GPM Dual-Frequency Precipitation Radar

View More View Less
  • 1 Tokai University, Sapporo, Japan
  • 2 Colorado State University, Fort Collins, Colorado
  • 3 Remote Sensing Technology Center of Japan, Tsukuba, Japan
  • 4 Japan Aerospace Exploration Agency, Tsukuba, Japan
  • 5 National Institute of Information and Communications Technology, Koganei, Japan
© Get Permissions
Restricted access

Abstract

The Global Precipitation Measurement (GPM) Dual-Frequency Precipitation Radar (DPR) algorithms consist of modules. This paper describes version 4 (V4) of GPM DPR level 2 (L2) classification (CSF) modules, which consist of two single-frequency (SF) modules—that is, Ku-only and Ka-only modules—and a dual-frequency (DF) module. Each CSF module detects bright band (BB) and classifies rain into three major types, that is, stratiform, convective, and other. The Ku-only and Ka-only CSF modules use algorithms that are similar to the Tropical Rainfall Measuring Mission (TRMM) rain type classification algorithm 2A23. The DF CSF module uses a new method called the measured dual-frequency ratio (DFRm) method for the rain type classification and the detection of BB. It is shown that the Ku-only CSF module and the DF CSF module produce almost indistinguishable rain type counts in a statistical sense. It is also shown that the DFRm method in the DF CSF module improves the detection of BB.

Corresponding author address: Jun Awaka, Sapporo Liberal Arts Education Center, Tokai University, Minami-ku, Minami-sawa 5-1-1-1, Sapporo 005-8601, Japan. E-mail: awaka@tsc.u-tokai.ac.jp

This article is included in the Precipitation Retrieval Algorithms for GPM special collection.

Abstract

The Global Precipitation Measurement (GPM) Dual-Frequency Precipitation Radar (DPR) algorithms consist of modules. This paper describes version 4 (V4) of GPM DPR level 2 (L2) classification (CSF) modules, which consist of two single-frequency (SF) modules—that is, Ku-only and Ka-only modules—and a dual-frequency (DF) module. Each CSF module detects bright band (BB) and classifies rain into three major types, that is, stratiform, convective, and other. The Ku-only and Ka-only CSF modules use algorithms that are similar to the Tropical Rainfall Measuring Mission (TRMM) rain type classification algorithm 2A23. The DF CSF module uses a new method called the measured dual-frequency ratio (DFRm) method for the rain type classification and the detection of BB. It is shown that the Ku-only CSF module and the DF CSF module produce almost indistinguishable rain type counts in a statistical sense. It is also shown that the DFRm method in the DF CSF module improves the detection of BB.

Corresponding author address: Jun Awaka, Sapporo Liberal Arts Education Center, Tokai University, Minami-ku, Minami-sawa 5-1-1-1, Sapporo 005-8601, Japan. E-mail: awaka@tsc.u-tokai.ac.jp

This article is included in the Precipitation Retrieval Algorithms for GPM special collection.

Save