• Bourassa, A. E., , Degenstein D. A. , , Randel W. J. , , Zawodny J. M. , , Kyrola E. , , McLinden C. A. , , Sioris C. E. , , and Roth C. Z. , 2014: Trends in stratospheric ozone derived from merged SAGE II and Odin-OSIRIS satellite observations. Atmos. Chem. Phys., 14, 69836994, doi:10.5194/acp-14-6983-2014.

    • Search Google Scholar
    • Export Citation
  • Chen, Y., , Han Y. , , Liu Q. , , Delst P. V. , , and Weng F. , 2011: Community radiative transfer model for Stratospheric Sounding Unit. J. Atmos. Oceanic Technol., 28, 767778, doi:10.1175/2010JTECHA1509.1.

    • Search Google Scholar
    • Export Citation
  • Christy, J. R., , Spencer R. W. , , Norris W. B. , , and Braswell W. D. , 2003: Error estimates of version 5.0 of MSU-AMSU bulk atmospheric temperature. J. Atmos. Oceanic Technol., 20, 613629, doi:10.1175/1520-0426(2003)20<613:EEOVOM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • COESA, 1976: U.S. Standard Atmosphere, 1976. NOAA, 227 pp.

  • Fels, S. B., , Mahlman J. D. , , Schwarzkopf M. D. , , and Sinclair R. W. , 1980: Stratospheric sensitivity to perturbations in ozone and carbon dioxide: Radiative and dynamical response. J. Atmos. Sci., 37, 22652297, doi:10.1175/1520-0469(1980)037<2265:SSTPIO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Fu, Q., , Johanson C. M. , , Warren S. G. , , and Seidel D. J. , 2004: Contribution of stratospheric cooling to satellite-inferred tropospheric temperature trends. Nature, 429, 5558, doi:10.1038/nature02524.

    • Search Google Scholar
    • Export Citation
  • Fu, Q., , Lin P. , , Solomon S. , , and Hartmann D. L. , 2015: Observational evidence of strengthening of the Brewer-Dobson circulation since 1980. J. Geophys. Res. Atmos., 120, 10 21410 228.

    • Search Google Scholar
    • Export Citation
  • Gillett, N. P., and Coauthors, 2011: Attribution of observed changes in stratospheric ozone and temperature. Atmos. Chem. Phys., 11, 599609, doi:10.5194/acp-11-599-2011.

    • Search Google Scholar
    • Export Citation
  • Goldberg, M. D., , and Fleming H. E. , 1995: An algorithm to generate deep-layer temperatures from microwave satellite observations for the purpose of monitoring climate change. J. Climate, 8, 9931004, doi:10.1175/1520-0442(1995)008<0993:AATGDL>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hansen, J. E., , Wang W.-C. , , and Lacis A. A. , 1978: Mount Agung eruption provides test of a global climatic perturbation. Science, 199, 10651068, doi:10.1126/science.199.4333.1065.

    • Search Google Scholar
    • Export Citation
  • Hansen, J. E., , Lacis A. , , Ruedy R. , , Sato M. , , and Wilson H. , 1993: How sensitive is the world’s climate? Natl. Geogr. Res. Explor., 9, 142158.

    • Search Google Scholar
    • Export Citation
  • Hansen, J. E., and Coauthors, 1996: A Pinatubo climate modeling investigation. The Mount Pinatubo Eruption: Effects on the Atmosphere and Climate, G. Fiocco, D. Fuà, and G. Visconti, Eds., NATO ASI Series Vol. 42, Springer-Verlag, 233–272, doi:10.1007/978-3-642-61173-5_20.

  • Kidwell, K. B., 1998: NOAA polar orbiter data users guide. NOAA. [Available online at http://webapp1.dlib.indiana.edu/virtual_disk_library/index.cgi/4284724/FID2496/podug/index.htm.]

  • Manabe, S., , and Wetherald R. T. , 1967: Thermal equilibrium of the atmosphere with a given distribution of relative humidity. J. Atmos. Sci., 24, 241259, doi:10.1175/1520-0469(1967)024<0241:TEOTAW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • McCormack, J. P., , and Hood L. L. , 1994: Relationship between ozone and temperature trends in the lower stratosphere: Latitude and seasonal dependences. Geophys. Res. Lett., 21, 16151618, doi:10.1029/94GL00777.

    • Search Google Scholar
    • Export Citation
  • McLandress, C., , Shepherd T. G. , , Jonsson A. I. , , von Clarmann T. , , and Funke B. , 2015: A method for merging nadir-sounding climate records, with an application to the global-mean stratospheric temperature data sets from SSU and AMSU. Atmos. Chem. Phys., 15, 92719284, doi:10.5194/acp-15-9271-2015.

    • Search Google Scholar
    • Export Citation
  • Mears, C. A., , and Wentz F. J. , 2009: Construction of the Remote Sensing Systems V3.2 atmospheric temperature records from the MSU and AMSU microwave sounders. J. Atmos. Oceanic Technol., 26, 10401056, doi:10.1175/2008JTECHA1176.1.

    • Search Google Scholar
    • Export Citation
  • Nash, J., , and Saunders R. , 2015: A review of Stratospheric Sounding Unit radiance observations for climate trends and reanalyses. Quart. J. Roy. Meteor. Soc., 141, 21032113, doi:10.1002/qj.2505.

    • Search Google Scholar
    • Export Citation
  • Pan, F., , Huang X. , , Strow L. L. , , and Guo H. , 2015: Linear trends and closures of 10-yr observations of AIRS stratospheric channels. J. Climate, 28, 89398950, doi:10.1175/JCLI-D-15-0418.1.

    • Search Google Scholar
    • Export Citation
  • Pollack, J. B., , Toon O. B. , , Sagan C. , , Summers A. , , Baldwin B. , , and Van Camp W. , 1976: Volcanic explosions and climatic change: Theoretical assessment. J. Geophys. Res., 81, 10711083, doi:10.1029/JC081i006p01071.

    • Search Google Scholar
    • Export Citation
  • Randel, W. J., and Coauthors, 2009: An update of observed stratospheric temperature trends. J. Geophys. Res., 114, D02107, doi:10.1029/2008JD010421.

    • Search Google Scholar
    • Export Citation
  • Randel, W. J., , Smith A. K. , , Wu F. , , Zou C.-Z. , , and Qian H. , 2016: Stratospheric temperature trends over 1979–2015 derived from combined SSU, MLS, and SABER satellite observations. J. Climate, 29, 48434859, doi:10.1175/JCLI-D-15-0629.1.

    • Search Google Scholar
    • Export Citation
  • Rienecker, M. M., and Coauthors, 2011: MERRA: NASA’s Modern-Era Retrospective Analysis for Research and Applications. J. Climate, 24, 36243648, doi:10.1175/JCLI-D-11-00015.1.

    • Search Google Scholar
    • Export Citation
  • Santer, B., and Coauthors, 2013: Identifying human influences on atmospheric temperature. Proc. Natl. Acad. Sci. USA, 110, 2633, doi:10.1073/pnas.1210514109.

    • Search Google Scholar
    • Export Citation
  • Sato, M., , Hansen J. E. , , McCormick M. P. , , and Pollack J. B. , 1993: Stratospheric aerosol optical depth, 1850–1990. J. Geophys. Res., 98, 22 98722 994, doi:10.1029/93JD02553.

    • Search Google Scholar
    • Export Citation
  • Seidel, D. J., , Gillett N. P. , , Lanzante J. R. , , Shine K. P. , , and Thorne P. W. , 2011: Stratospheric temperature trends: Our evolving understanding. Wiley Interdiscip. Rev.: Climate Change, 2, 592616, doi:10.1002/wcc.125.

    • Search Google Scholar
    • Export Citation
  • Seidel, D. J., and Coauthors, 2016: Stratospheric temperature changes during the satellite era. J. Geophys. Res. Atmos., 121, 664681, doi:10.1002/2015JD024039.

    • Search Google Scholar
    • Export Citation
  • Shine, K. P., and Coauthors, 2003: A comparison of model-simulated trends in stratospheric temperatures. Quart. J. Roy. Meteor. Soc., 129, 1565, doi:10.1256/qj.02.186.

    • Search Google Scholar
    • Export Citation
  • Thompson, D. W. J., and Coauthors, 2012: The mystery of recent stratospheric temperature trends. Nature, 491, 692697, doi:10.1038/nature11579.

    • Search Google Scholar
    • Export Citation
  • Vernier, J.-P., and Coauthors, 2011: Major influence of tropical volcanic eruptions on the stratospheric aerosol layer during the last decade. Geophys. Res. Lett., 38, L12807, doi:10.1029/2011GL047563.

    • Search Google Scholar
    • Export Citation
  • Wang, L., , Zou C.-Z. , , and Qian H. , 2012: Construction of stratospheric temperature data records from Stratospheric Sounding Units. J. Climate, 25, 29312946, doi:10.1175/JCLI-D-11-00350.1.

    • Search Google Scholar
    • Export Citation
  • Wang, W., , and Zou C.-Z. , 2014: AMSU-A-only atmospheric temperature data records from the lower troposphere to the top of the stratosphere. J. Atmos. Oceanic Technol., 31, 808825, doi:10.1175/JTECH-D-13-00134.1.

    • Search Google Scholar
    • Export Citation
  • WMO, 1999: Scientific assessment of ozone depletion: 1998. Global Ozone Research and Monitoring Project Rep. 44, 558 pp.

  • WMO, 2010: Implementation plan for the global observing system for climate in support of the UNFCCC (2010 update). GCOS-138, GOOS-184, GTOS-76, WMO/TD-1523, 180 pp. [Available online at http://www.wmo.int/pages/prog/gcos/Publications/gcos-138.pdf.]

  • Zou, C.-Z., , and Wang W. , 2011: Intersatellite calibration of AMSU-A observations for weather and climate applications. J. Geophys. Res., 116, D23113, doi:10.1029/2011JD016205.

    • Search Google Scholar
    • Export Citation
  • Zou, C.-Z., , Goldberg M. , , Cheng Z. , , Grody N. , , Sullivan J. , , Cao C. , , and Tarpley D. , 2006: Recalibration of microwave sounding unit for climate studies using simultaneous nadir overpasses. J. Geophys. Res., 111, D19114, doi:10.1029/2005JD006798.

    • Search Google Scholar
    • Export Citation
  • Zou, C.-Z., , Qian H. , , Wang W. , , Wang L. , , and Long C. , 2014: Recalibration and merging of SSU observations for stratospheric temperature trend studies. J. Geophys. Res. Atmos., 119, 13 18013 205, doi:10.1002/2014JD021603.

    • Search Google Scholar
    • Export Citation
  • Zou, X., , Weng F. , , and Yang H. , 2014: Connecting the time series of microwave sounding observations from AMSU to ATMS for long-term monitoring of climate. J. Atmos. Oceanic Technol., 31, 22062222, doi:10.1175/JTECH-D-13-00232.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 31 31 8
PDF Downloads 30 30 7

Stratospheric Temperature Climate Data Record from Merged SSU and AMSU-A Observations

View More View Less
  • 1 Center for Satellite Applications and Research, NOAA/NESDIS, College Park, Maryland
  • 2 Earth Resource Technology, Inc., Laurel, Maryland
© Get Permissions
Restricted access

Abstract

Observations from the Stratospheric Sounding Unit (SSU) on board historical NOAA polar-orbiting satellites have played a vital role in investigations of long-term trends and variability in the middle- and upper-stratospheric temperatures during 1979–2006. The successor to SSU is the Advanced Microwave Sounding Unit-A (AMSU-A) starting from 1998 until the present. Unfortunately, the two observations came from different sets of atmospheric layers, and the SSU weighting functions varied with time and location, posing a challenge to merge them with sufficient accuracy for development of an extended SSU climate data record. This study proposes a variational approach for the merging problem, matching in both temperatures and weighting functions. The approach yields zero means with a small standard deviation and a negligible drift over time in the temperature differences between SSU and its extension to AMSU-A. These features made the approach appealing for reliable detection of long-term climate trends. The approach also matches weighting functions with high accuracy for SSU channels 1 and 2 and reasonable accuracy for channel 3. The total decreases in global mean temperatures found from the merged dataset were from 1.8 K in the middle stratosphere to 2.4 K in the upper stratosphere during 1979–2015. These temperature drops were associated with two segments of piecewise linear cooling trends, with those during the first period (1979–97) being much larger than those of the second period (1998–2015). These differences in temperature trends corresponded well to changes of the atmospheric ozone amount from depletion to recovery during the respective time periods, showing the influence of human decisions on climate change.

Corresponding author address: Dr. Cheng-Zhi Zou, Center for Satellite Applications and Research, NOAA/NESDIS, NOAA Center for Weather and Climate Prediction, 5830 University Research Court, College Park, MD 20740. E-mail: cheng-zhi.zou@noaa.gov

Abstract

Observations from the Stratospheric Sounding Unit (SSU) on board historical NOAA polar-orbiting satellites have played a vital role in investigations of long-term trends and variability in the middle- and upper-stratospheric temperatures during 1979–2006. The successor to SSU is the Advanced Microwave Sounding Unit-A (AMSU-A) starting from 1998 until the present. Unfortunately, the two observations came from different sets of atmospheric layers, and the SSU weighting functions varied with time and location, posing a challenge to merge them with sufficient accuracy for development of an extended SSU climate data record. This study proposes a variational approach for the merging problem, matching in both temperatures and weighting functions. The approach yields zero means with a small standard deviation and a negligible drift over time in the temperature differences between SSU and its extension to AMSU-A. These features made the approach appealing for reliable detection of long-term climate trends. The approach also matches weighting functions with high accuracy for SSU channels 1 and 2 and reasonable accuracy for channel 3. The total decreases in global mean temperatures found from the merged dataset were from 1.8 K in the middle stratosphere to 2.4 K in the upper stratosphere during 1979–2015. These temperature drops were associated with two segments of piecewise linear cooling trends, with those during the first period (1979–97) being much larger than those of the second period (1998–2015). These differences in temperature trends corresponded well to changes of the atmospheric ozone amount from depletion to recovery during the respective time periods, showing the influence of human decisions on climate change.

Corresponding author address: Dr. Cheng-Zhi Zou, Center for Satellite Applications and Research, NOAA/NESDIS, NOAA Center for Weather and Climate Prediction, 5830 University Research Court, College Park, MD 20740. E-mail: cheng-zhi.zou@noaa.gov
Save