Atmospheric Ice Particle Shape Estimates from Polarimetric Radar Measurements and In Situ Observations

Sergey Y. Matrosov Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, and NOAA/Earth System Research Laboratory, Boulder, Colorado

Search for other papers by Sergey Y. Matrosov in
Current site
Google Scholar
PubMed
Close
,
Carl G. Schmitt National Center for Atmospheric Research, Boulder, Colorado

Search for other papers by Carl G. Schmitt in
Current site
Google Scholar
PubMed
Close
,
Maximilian Maahn Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, and NOAA/Earth System Research Laboratory, Boulder, Colorado

Search for other papers by Maximilian Maahn in
Current site
Google Scholar
PubMed
Close
, and
Gijs de Boer Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, and NOAA/Earth System Research Laboratory, Boulder, Colorado

Search for other papers by Gijs de Boer in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

A remote sensing approach to retrieve the degree of nonsphericity of ice hydrometeors using scanning polarimetric Ka-band radar measurements from a U.S. Department of Energy Atmospheric Radiation Measurement (ARM) Program cloud radar operated in an alternate transmission–simultaneous reception mode is introduced. Nonsphericity is characterized by aspect ratios representing the ratios of particle minor-to-major dimensions. The approach is based on the use of a circular depolarization ratio (CDR) proxy reconstructed from differential reflectivity ZDR and copolar correlation coefficient ρ linear polarization measurements. Essentially combining information contained in ZDR and ρ, CDR-based retrievals of aspect ratios are fairly insensitive to hydrometeor orientation if measurements are performed at elevation angles of around 40°–50°. The suggested approach is applied to data collected using the third ARM Mobile Facility (AMF3), deployed to Oliktok Point, Alaska. Aspect ratio retrievals were also performed using ZDR measurements that are more strongly (compared to CDR) influenced by hydrometeor orientation. The results of radar-based retrievals are compared with in situ measurements from the tethered balloon system (TBS)-based video ice particle sampler and the ground-based multiangle snowflake camera. The observed ice hydrometeors were predominantly irregular-shaped ice crystals and aggregates, with aspect ratios varying between approximately 0.3 and 0.8. The retrievals assume that particle bulk density influencing (besides the particle shape) observed polarimetric variables can be deduced from the estimates of particle characteristic size. Uncertainties of CDR-based aspect ratio retrievals are estimated at about 0.1–0.15. Given these uncertainties, radar-based retrievals generally agreed with in situ measurements. The advantages of using the CDR proxy compared to the linear depolarization ratio are discussed.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Sergey Y. Matrosov, sergey.matrosov@noaa.gov

Abstract

A remote sensing approach to retrieve the degree of nonsphericity of ice hydrometeors using scanning polarimetric Ka-band radar measurements from a U.S. Department of Energy Atmospheric Radiation Measurement (ARM) Program cloud radar operated in an alternate transmission–simultaneous reception mode is introduced. Nonsphericity is characterized by aspect ratios representing the ratios of particle minor-to-major dimensions. The approach is based on the use of a circular depolarization ratio (CDR) proxy reconstructed from differential reflectivity ZDR and copolar correlation coefficient ρ linear polarization measurements. Essentially combining information contained in ZDR and ρ, CDR-based retrievals of aspect ratios are fairly insensitive to hydrometeor orientation if measurements are performed at elevation angles of around 40°–50°. The suggested approach is applied to data collected using the third ARM Mobile Facility (AMF3), deployed to Oliktok Point, Alaska. Aspect ratio retrievals were also performed using ZDR measurements that are more strongly (compared to CDR) influenced by hydrometeor orientation. The results of radar-based retrievals are compared with in situ measurements from the tethered balloon system (TBS)-based video ice particle sampler and the ground-based multiangle snowflake camera. The observed ice hydrometeors were predominantly irregular-shaped ice crystals and aggregates, with aspect ratios varying between approximately 0.3 and 0.8. The retrievals assume that particle bulk density influencing (besides the particle shape) observed polarimetric variables can be deduced from the estimates of particle characteristic size. Uncertainties of CDR-based aspect ratio retrievals are estimated at about 0.1–0.15. Given these uncertainties, radar-based retrievals generally agreed with in situ measurements. The advantages of using the CDR proxy compared to the linear depolarization ratio are discussed.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Sergey Y. Matrosov, sergey.matrosov@noaa.gov
Save
  • Avramov, A., and J. Y. Harrington, 2010: Influence of parameterized ice habit on simulated mixed phase Arctic clouds. J. Geophys. Res., 115, D03205, doi:10.1029/2009JD012108.

    • Search Google Scholar
    • Export Citation
  • Brown, P. R. A., and P. N. Francis, 1995: Improved measurements of the ice water content in cirrus using a total-water probe. J. Atmos. Oceanic Technol., 12, 410414, doi:10.1175/1520-0426(1995)012<0410:IMOTIW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cadeddu, M., 2011: ARM: Microwave radiometer, 3 channel (OLIMWR3C). Atmospheric Radiation Measurement Climate Research Facility Data Archive. Subset used: 70°29′42.89″N, 149°53′12.78″W: Oliktok Point Mobile Facility (M1), accessed 21 October 2016, doi:10.5439/1025248.

    • Crossref
    • Export Citation
  • Coulter, R., J. Kyrouac, and D. Holdridge, 1994: ARM: Balloon-borne sounding system (BBSS): Vaisala-processed winds, pressure, temperature, and RH (SONDEWNPN). Atmospheric Radiation Measurement Climate Research Facility Data Archive. Subset used: 70°29′42.89″N, 149°53′12.78″W: Oliktok Point Mobile Facility (M1), accessed 20 October 2016, doi:10.5439/1021460.

    • Crossref
    • Export Citation
  • Doviak, R. J., V. Bringi, A. Ryzhkov, A. Zahrai, and D. Zrnić, 2000: Considerations for polarimetric upgrades to operational WSR-88D radars. J. Atmos. Oceanic Technol., 17, 257278, https://doi.org/10.1175/1520-0426(2000)017<0257:CFPUTO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Garrett, T. J., C. Fallgatter, K. Shkurko, and D. Howlett, 2012: Fall speed measurement and high-resolution multi-angle photography of hydrometeors in free fall. Atmos. Meas. Tech., 5, 26252633, doi:10.5194/amt-5-2625-2012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Garrett, T. J., S. E. Yuter, C. Fallgatter, K. Shkurko, S. R. Rhodes, and J. L. Endies, 2015: Orientations and aspect ratios of falling snow. Geophys. Res. Lett., 42, 46174622, doi:10.1002/2015GL064040.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gaustad, K., K. Shkurko, and T. Garrett, 2015: ARM: Multi-angle snowflake camera, analysis per particle (images and their aggregation) (MASCPARTICLES). Atmospheric Radiation Measurement Climate Research Facility Data Archive. Subset used: 70°29′42.89″N, 149°53′12.78″W: Oliktok Point Mobile Facility (M1), accessed 21 October 2016, doi:10.5439/1350635.

    • Crossref
    • Export Citation
  • Hardin, J., D. Nelson, I. Lindenmaier, B. Isom, K. Johnson, A. Matthews, and N. Bharadwaj, 2011: ARM: Ka-band scanning ARM cloud radar hemispherical sky RHI scan (KASACRHSRH). Atmospheric Radiation Measurement Climate Research Facility Data Archive. Subset used: 70°N29′42.89″N, 149°53′12.78″W: Oliktok Point Mobile Facility (M1), accessed 21 October 2016, doi:10.5439/1046197.

    • Crossref
    • Export Citation
  • Heymsfield, A. J., C. Schmitt, and A. Bansemer, 2013: Ice cloud particle size distributions and pressure-dependent terminal velocities from in situ observations at temperatures from 0° to −86°C. J. Atmos. Sci., 70, 41234154, doi:10.1175/JAS-D-12-0124.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Heymsfield, A. J., S. Y. Matrosov, and N. B. Wood, 2016: Toward improving ice water content and snow rate retrievals from radars. Part I: X and W bands, emphasizing CloudSat. J. Appl. Meteor. Climatol., 55, 20632090, doi:10.1175/JAMC-D-15-0290.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hogan, R. J., and C. D. Westbrook, 2014: Equation for the microwave backscatter cross section of aggregate snowflakes using the self-similar Rayleigh–Gans approximation. J. Atmos. Sci., 71, 32923301, doi:10.1175/JAS-D-13-0347.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hogan, R. J., L. Tian, P. R. A. Brown, C. D. Westbrook, A. J. Heymsfield, and J. D. Eastment, 2012: Radar scattering from ice aggregates using the horizontally aligned oblate spheroid approximation. J. Appl. Meteor. Climatol., 51, 655671, doi:10.1175/JAMC-D-11-074.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jameson, A. R., 1987: Relations among linear and circular polarization parameters measured in canted hydrometeors. J. Atmos. Oceanic Technol., 4, 634645, doi:10.1175/1520-0426(1987)004<0634:RALACP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jensen, A. A., J. Y. Harrington, H. Morrison, and J. A. Milbrandt, 2017: Predicting ice shape evolution in a bulk microphysics model. J. Atmos. Sci., 74, 20812104, doi:10.1175/JAS-D-16-0350.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jiang, Z., M. Oue, J. Verlinde, E. Clothiaux, K. Aydin, G. Botta, and Y. Lu, 2017: What can we conclude about real aspect ratios of ice particle aggregates from two-dimensional images? J. Appl. Meteor. Climatol., 56, 725734, doi:10.1175/JAMC-D-16-0248.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kokhanovsky, A., and A. Macke, 1999: The dependence of the radiative characteristics of optically thick media on the shape of particles. J. Quant. Spectrosc. Radiat. Transfer, 63, 393407, doi:10.1016/S0022-4073(99)00027-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kollias, P., N. Bharadwaj, K. Widener, I. Jo, and K. Johnson, 2014: Scanning ARM cloud radars: Operational sampling strategies. J. Atmos. Oceanic Technol., 31, 569582, doi:10.1175/JTECH-D-13-00044.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Korolev, A. V., and G. A. Isaac, 2003: Roundness and aspect ratio of particles in ice clouds. J. Atmos. Sci., 60, 17951808, doi:10.1175/1520-0469(2003)060<1795:RAAROP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Korolev, A. V., G. A. Isaac, and J. Hallett, 1999: Ice particle habits in Arctic clouds. Geophys. Res. Lett., 26, 12991302, doi:10.1029/1999GL900232.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kosarev, A. L., and I. P. Mazin, 1991: An empirical model of the physical structure of upper-layer clouds. Atmos. Res., 26, 213228, doi:10.1016/0169-8095(91)90055-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kropfli, R. A., B. W. Bartram, and S. Y. Matrosov, 1990: The upgraded WPL dual-polarization 8-mm Doppler radar for microphysical and climate research. Preprints, Conf. on Cloud Physics, San Francisco, CA, Amer. Meteor. Soc., 341–345.

  • Leinonen, J., S. Kneiefel, D. Moisseev, J. Tyynela, S. Tanelli, and T. Nousiainen, 2012: Evidence of nonspheroidal behavior in millimeter-wavelength radar observations of snowfall. J. Geophys. Res., 117, D18205, doi:10.1029/2012JD017680.

    • Search Google Scholar
    • Export Citation
  • Maahn, M., and U. Löhnert, 2017: Potential of higher-order moments and slopes of the radar Doppler spectrum for retrieving microphysical and kinematic properties of Arctic ice clouds. J. Appl. Meteor. Climatol., 56, 263282, doi:10.1175/JAMC-D-16-0020.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Magono, C., and T. Nakamura, 1965: Aerodynamic studies of falling snowflakes. J. Meteor. Soc. Japan, 43, 139147, doi:10.2151/jmsj1965.43.3_139.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marchand, R., G. G. Mace, A. G. Hallar, I. B. McCubbin, S. Y. Matrosov, and M. D. Shupe, 2013: Enhanced radar backscattering due to oriented ice particles at 95 GHz during StormVEx. J. Atmos. Oceanic Technol., 30, 23362351, doi:10.1175/JTECH-D-13-00005.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Matrosov, S. Y., 1993: Possibilities of cirrus particle sizing from dual-frequency radar measurements. J. Geophys. Res., 98, 20 67520 683, doi:10.1029/93JD02335.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Matrosov, S. Y., 1997: Variability of microphysical parameters in high-altitude ice clouds: Results of the remote sensing method. J. Appl. Meteor., 36, 633648, doi:10.1175/1520-0450-36.6.633.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Matrosov, S. Y., 2007: Modeling backscatter properties of snowfall at millimeter wavelengths. J. Atmos. Sci., 64, 17271736, doi:10.1175/JAS3904.1.

  • Matrosov, S. Y., 2011: Feasibility of using radar differential Doppler velocity and dual-frequency ratio for sizing particles in thick ice clouds. J. Geophys. Res., 116, D17202, doi:10.1029/2011JD015857.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Matrosov, S. Y., 2015: Evaluations of the spheroidal particle model for describing cloud radar depolarization ratios of ice hydrometeors. J. Atmos. Oceanic Technol., 32, 865879, doi:10.1175/JTECH-D-14-00115.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Matrosov, S. Y., and A. J. Heymsfield, 2017: Empirical relations between size parameters of ice hydrometeor populations and radar reflectivity. J. Appl. Meteor. Climatol., 56, 24792488, doi:10.1175/JAMC-D-17-0076.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Matrosov, S. Y., R. F. Reinking, R. A. Kropfï, B. E. Martner, and B. W. Bartram, 2001: On the use of radar depolarization ratios for estimating shapes of ice hydrometeors in winter clouds. J. Appl. Meteor., 40, 479490, doi:10.1175/1520-0450(2001)040,0479: OTUORD.2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Matrosov, S. Y., A. V. Korolev, and A. J. Heymsfield, 2002: Profiling cloud ice mass and particle characteristic size from Doppler radar measurements. J. Atmos. Oceanic Technol., 19, 10031018, doi:10.1175/1520-0426(2002)019<1003:PCIMAP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Matrosov, S. Y., R. F. Reinking, and I. V. Djalalova, 2005: Inferring fall attitudes of pristine dendritic crystals from polarimetric radar data. J. Atmos. Sci., 62, 241250, doi:10.1175/JAS-3356.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Matrosov, S. Y., G. G. Mace, R. Marchand, M. D. Shupe, A. G. Hallar, and I. B. McCubbin, 2012: Observations of Ice crystal habits with a scanning polarimetric W-band radar at slant linear depolarization ratio mode. J. Atmos. Oceanic Technol., 29, 9891008, doi:10.1175/JTECH-D-11-00131.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Melnikov, V., 2017: Parameters of ice cloud particles retrieved from radar data. J. Atmos. Oceanic Technol., 34, 717728, doi:10.1175/JTECH-D-16-0123.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Melnikov, V., and S. Y. Matrosov, 2013: Estimations of aspect ratios of ice cloud particles with the WSR-88D radar. 36th Conf. on Radar Meteorology, Breckenridge, CO, Amer. Meteor. Soc., 245, https://ams.confex.com/ams/36Radar/webprogram/Paper228291.html.

  • Melnikov, V., and J. M. Straka, 2013: Axis ratios and flutter angles of cloud ice particles: Retrievals from radar data. J. Atmos. Oceanic Technol., 30, 16911703, doi:10.1175/JTECH-D-12-00212.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mishchenko, M. I., and L. D. Travis, 1994: T-matrix computations of light scattering by large spheroidal particles. Opt. Commun., 109, 1621, doi:10.1016/0030-4018(94)90731-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Myagkov, A., P. Seifert, M. Bauer-Pfundstein, and U. Wandinger, 2016a: Cloud radar with hybrid mode towards estimation of shape and orientation of ice crystals. Atmos. Meas. Tech., 9, 469489, doi:10.5194/amt-9-469-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Myagkov, A., P. Seifert, U. Wandinger, J. Buehl, and R. Engelmann, 2016b: Relationship between temperature and apparent shape of pristine ice crystals derived from polarimetric cloud radar observations during the ACCEPT campaign. Atmos. Meas. Tech., 9, 37393754, doi:10.5194/amt-9-3739-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pruppacher, H. R., and J. D. Klett, 1978: Microphysics of Clouds and Precipitation. D. Reidel, 714 pp., doi:10.1007/978-94-009-9905-3.

    • Crossref
    • Export Citation
  • Reinking, R. F., S. Y. Matrosov, R. A. Kropfli, and B. W. Bartram, 2002: Evaluation of a 45° slant quasi-linear radar polarization for distinguishing drizzle droplets, pristine ice crystals, and less regular ice particles. J. Atmos. Oceanic Technol., 19, 296321, doi:10.1175/1520-0426-19.3.296.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ryzhkov, A., and Coauthors, 2017: Estimation of depolarization ratio using weather radars with simultaneous transmission / reception. J. Appl. Meteor. Climatol., 56, 17971816, doi:10.1175/JAMC-D-16-0098.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schmitt, C. G., M. Stuefer, A. J. Heymsfield, and C. K. Kim, 2013: The microphysical properties of ice fog measured in urban environments of Interior Alaska. J. Geophys. Res. Atmos., 118, 11 13611 147, doi:10.1002/jgrd.50822.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sheridan, L. M., J. Y. Harrington, D. Lamb, and K. Sulia, 2009: Influence of ice crystal aspect ratio on the evolution of ice size spectra during vapor deposition growth. J. Atmos. Sci., 66, 37323743, doi:10.1175/2009JAS3113.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shupe, M. D., D. D. Turner, A. Zwink, M. M. Thieman, E. J. Mlawer, and T. Shippert, 2015: Deriving Arctic cloud microphysics at Barrow, Alaska: Algorithms, results, and radiative closure. J. Appl. Meteor. Climatol., 54, 16751689, doi:10.1175/JAMC-D-15-0054.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • von Lerber, A. M., D. Moisseev, L. F. Bliven, W. Petersen, A.-M. Harri, and V. Chandrasekar, 2017: Microphysical properties of snow and their link to ZeS relation during BAECC 2014. J. Appl. Meteor. Climatol., 56, 15611581, doi:10.1175/JAMC-D-16-0379.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 766 209 31
PDF Downloads 592 100 10