• Ackerman, S. A., R. E. Holz, R. Frey, E. W. Eloranta, B. C. Maddux, and M. McGill, 2008: Cloud detection with MODIS. Part II: Validation. J. Atmos. Oceanic Technol., 25, 10731086, doi:10.1175/2007JTECHA1053.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barton, I. J., 1995: Satellite-derived sea surface temperatures: Current status. J. Geophys. Res., 100, 87778790, doi:10.1029/95JC00365.

  • Bogdanoff, A. S., D. L. Westphal, J. R. Campbell, J. A. Cummings, E. J. Hyer, J. S. Reid, and C. A. Clayson, 2015: Sensitivity of infrared sea surface temperature retrievals to the vertical distribution of airborne dust aerosol. Remote Sens. Environ., 159, 113, doi:10.1016/j.rse.2014.12.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brisson, A., P. Le Borgne, and A. Marsouin, 2002: Results of one year of preoperational production of sea surface temperatures from GOES-8. J. Atmos. Oceanic Technol., 19, 16381652, doi:10.1175/1520-0426(2002)019<1638:ROOYOP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brown, O. B., P. J. Minnett, R. Evans, E. Kearns, K. Kilpatrick, A. Kumar, R. Sikorski, and A. Závody, 1999: MODIS infrared sea surface temperature algorithm. Algorithm Theoretical Basis Doc. Version 2.0, University of Miami, 91 pp.

  • Campbell, J. R., M. A. Vaughan, M. Oo, R. E. Holz, J. R. Lewis, and E. J. Welton, 2015: Distinguishing cirrus cloud presence in autonomous lidar measurements. Atmos. Meas. Tech., 8, 435449, doi:10.5194/amt-8-435-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chew, B. N., J. R. Campbell, J. S. Reid, D. M. Giles, E. J. Welton, S. V. Salinas, and S. C. Liew, 2011: Tropical cirrus cloud contamination in sun photometer data. Atmos. Environ., 45, 67246731, doi:10.1016/j.atmosenv.2011.08.017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Davis, G., 2007: History of the NOAA satellite program. J. Appl. Remote Sens., 1, 012504, doi:10.1117/1.2642347.

  • Demaria, M., and J. Kaplan, 1994: Sea surface temperature and the maximum intensity of Atlantic tropical cyclones. J. Climate, 7, 13241334, doi:10.1175/1520-0442(1994)007<1324:SSTATM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Deschamps, P. Y., and T. Phulpin, 1980: Atmospheric correction of infrared measurements of sea surface temperature using channels at 3.7, 11 and 12 Mm. Bound.-Layer Meteor., 18, 131143, doi:10.1007/BF00121320.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Donlon, C., and Coauthors, 2007: The Global Ocean Data Assimilation Experiment High-Resolution Sea Surface Temperature Pilot Project. Bull. Amer. Meteor. Soc., 88, 11971213, doi:10.1175/BAMS-88-8-1197.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fueglistaler, S., A. E. Dessler, T. J. Dunkerton, I. Folkins, Q. Fu, and P. W. Mote, 2009: Tropical tropopause layer. Rev. Geophys., 47, RG1004, doi:10.1029/2008RG000267.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gao, B.-C., Y. J. Kaufman, W. Han, and W. J. Wiscombe, 1998: Correction of thin cirrus path radiances in the 0.4–1.0 μm spectral region using the sensitive 1.375 μm cirrus detecting channel. J. Geophys. Res., 103, 32 16932 176, doi:10.1029/98JD02006.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Garnier, A., J. Pelon, M. A. Vaughan, D. M. Winker, C. R. Trepte, and P. Dubuisson, 2015: Lidar multiple scattering factors inferred from CALIPSO lidar and IIR retrievals of semi-transparent cirrus cloud optical depths over oceans. Atmos. Meas. Tech., 8, 27592774, doi:10.5194/amt-8-2759-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Harris, A., and E. Maturi, 2003: Assimilation of satellite sea surface temperature retrievals. Bull. Amer. Meteor. Soc., 84, 15751580, doi:10.1175/BAMS-84-11-1575.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Heymsfield, A., D. Winker, M. Avery, M. Vaughan, G. Diskin, M. Deng, V. Mitev, and R. Matthey, 2014: Relationships between ice water content and volume extinction coefficient from in situ observations for temperatures from 0° to −86°C: Implications for spaceborne lidar retrievals. J. Appl. Meteor. Climatol., 53, 479505, doi:10.1175/JAMC-D-13-087.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hosoda, K., 2011: Algorithm for estimating sea surface temperatures based on Aqua/MODIS global ocean data. 2. Automated quality check process for eliminating cloud contamination. J. Oceanogr., 67, 791805, doi:10.1007/s10872-011-0077-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, B., C. Liu, V. F. Banzon, H.-M. Zhang, T. R. Karl, J. H. Lawrimore, and R. S. Vose, 2016: Assessing the impact of satellite-based observations in sea surface temperature trends. Geophys. Res. Lett., 43, 34313437, doi:10.1002/2016GL068757.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, J. F., N. C. Hsu, S. C. Tsay, M. J. Jeong, B. N. Holben, T. A. Berkoff, and E. J. Welton, 2011: Susceptibility of aerosol optical thickness retrievals to thin cirrus contamination during the BASE-ASIA campaign. J. Geophys. Res., 116, D08214, doi:10.1029/2010JD014910.

    • Search Google Scholar
    • Export Citation
  • Huang, J. F., N. C. Hsu, S-C. Tsay, Z. Liu, M.-J. Jeong, R. A. Hansell, and J. Lee, 2013: Use of spaceborne lidar for the evaluation of thin cirrus contamination and screening in the Aqua MODIS Collection 5 aerosol products. J. Geophys. Res. Atmos., 118, 64446453, doi:10.1002/jgrd.50504.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kelley, J. G. W., D. W. Behringer, H. J. Thiebaux, and B. Balasubramaniyan, 2002: Assimilation of SST data into a real-time coastal ocean forecast system for the U.S. East Coast. Wea. Forecasting, 17, 670690, doi:10.1175/1520-0434(2002)017<0670:AOSDIA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kilpatrick, K. A., G. P. Podestá, and R. Evans, 2001: Overview of the NOAA/NASA advanced very high resolution radiometer Pathfinder algorithm for sea surface temperature and associated matchup database. J. Geophys. Res., 106, 91799197, doi:10.1029/1999JC000065.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Koner, P. K., A. Harris, and E. Maturi, 2015: A physical deterministic inverse method for operational satellite remote sensing: An application for sea surface temperature retrievals. IEEE Trans. Geosci. Remote Sens., 53, 58725888, doi:10.1109/TGRS.2015.2424219.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lavanant, L., P. Marguinaud, L. Harang, J. Lelay, S. Péré, and S. Phillippe, 2007: Operational cloud masking for the OSI SAF global METOP/AVHRR SST product. Proc. Joint 2007 EUMETSAT Meteorological Satellite Conf. and the 15th Satellite Meteorology and Oceanography Conf. of the American Meteorological Society, Amsterdam, Netherlands, EUMETSAT and Amer. Meteor. Soc., 259, 8 pp. [Available online at http://www.eumetsat.int/website/wcm/idc/idcplg?IdcService=GET_FILE&dDocName=PDF_CONF_P50_S8_07_LAVANANT_P&RevisionSelectionMethod=LatestReleased&Rendition=Web.]

  • Le Borgne, P., G. Legendre, and A. Marsouin, 2007: Operational SST retrieval from METOP/AVHRR. Proc. Joint 2007 EUMETSAT Meteorological Satellite Conf. and the 15th Satellite Meteorology and Oceanography Conf. of the American Meteorological Society, Amsterdam, Netherlands, EUMETSAT and Amer. Meteor. Soc., 10 pp. [Available online at http://www.eumetsat.int/website/wcm/idc/idcplg?IdcService=GET_FILE&dDocName=PDF_CONF_P50_S5_01_LEBORGNE_V&RevisionSelectionMethod=LatestReleased&Rendition=Web.]

  • Llewellyn-Jones, D. T., P. J. Minnett, R. W. Saunders, and A. M. Zavody, 1984: Satellite multichannel infrared measurements of sea surface temperature of the N.E. Atlantic Ocean using AVHRR/2. Quart. J. Roy. Meteor. Soc., 110, 613631, doi:10.1002/qj.49711046504.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mace, G. G., Q. Zhang, M. Vaughan, R. Marchand, G. Stephens, C. Trepte, and D. Winker, 2009: A description of hydrometeor layer occurrence statistics derived from the first year of merged Cloudsat and CALIPSO data. J. Geophys. Res., 114, D00A26, doi:10.1029/2007JD009755.

    • Search Google Scholar
    • Export Citation
  • McClain, E. P., W. G. Pichel, and C. C. Walton, 1985: Comparative performance of AVHRR-based multichannel sea surface temperatures. J. Geophys. Res., 90, 11 58711 601, doi:10.1029/JC090iC06p11587.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Merchant, C. J., and P. Le Borgne, 2004: Retrieval of sea surface temperature from space, based on modeling of infrared radiative transfer: Capabilities and limitations. J. Atmos. Oceanic Technol., 21, 17341746, doi:10.1175/JTECH1667.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Merchant, C. J., A. R. Harris, M. J. Murray, and A. M. Závody, 1999: Toward the elimination of bias in satellite retrievals of sea surface temperature: 1. Theory, modeling and interalgorithm comparison. J. Geophys. Res., 104, 23 56523 578, doi:10.1029/1999JC900105.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Merchant, C. J., P. Le Borgne, A. Marosuin, and H. Roquet, 2008: Optimal estimation of sea surface temperature from split-window observations. Remote Sens. Environ., 112, 24692484, doi:10.1016/j.rse.2007.11.011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Merchant, C. J., A. R. Harris, E. Maturi, O. Embury, S. N. MacCallum, J. Mittaz, and C. P. Old, 2009: Sea surface temperature estimation from the Geostationary Operational Environmental Satellite-12 (GOES-12). J. Atmos. Oceanic Technol., 26, 570581, doi:10.1175/2008JTECHO596.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Merchant, C. J., and Coauthors, 2012: A 20 year independent record of sea surface temperature for climate from Along Track Scanning Radiometers. J. Geophys. Res., 117, C12013, doi:10.1029/2012JC008400.

    • Search Google Scholar
    • Export Citation
  • Miller, B. I., 1958: On the maximum intensity of hurricanes. J. Meteor., 15, 184195, doi:10.1175/1520-0469(1958)015<0184:OTMIOH>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Minnett, P. J., and Coauthors, 2013: Assessment of Suomi-NPP VIIRS sea surface temperature retrievals. University of Miami, 26 pp.

  • Miyazawa, Y., H. Murakami, T. Miyama, S. M. Varlamov, X. Guo, T. Waseda, and S. Sil, 2013: Data assimilation of the high-resolution sea surface temperature obtained from the Aqua-Terra satellites (MODIS-SST) using an ensemble Kalman filter. Remote Sens., 5, 31233139, doi:10.3390/rs5063123.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Petrenko, B., A. Ignatov, Y. Kihai, J. Stroup, and P. Dash, 2014: Evaluation and selection of SST regression algorithms for JPSS VIIRS. J. Geophys. Res. Atmos., 119, 45804599, doi:10.1002/2013JD020637.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pichel, W., E. Maturi, P. Clemente-Colón, and J. Sapper, 2001: Deriving the operational nonlinear multichannel sea surface temperature algorithm coefficients for NOAA-15 AVHRR/3. Int. J. Remote Sens., 22, 699704, doi:10.1080/01431160010013793.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reynolds, R. W., and T. M. Smith, 1994: Improved global sea surface temperature analyses using optimum interpolation. J. Climate, 7, 929948, doi:10.1175/1520-0442(1994)007<0929:IGSSTA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ricchiazzi, P., S. Yang, C. Gautier, and D. Sowle, 1998: SBDART: A research and teaching software tool for plane-parallel radiative transfer in the Earth’s atmosphere. Bull. Amer. Meteor. Soc., 79, 21012114, doi:10.1175/1520-0477(1998)079<2101:SARATS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Roemmich, D., and Coauthors, 2009: The Argo program: Observing the global ocean with profiling floats. Oceanography, 22, 3443, doi:10.5670/oceanog.2009.36.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sassen, K., and B. S. Cho, 1992: Subvisual-thin cirrus lidar dataset for satellite verification and climatological research. J. Appl. Meteor., 31, 12751285, doi:10.1175/1520-0450(1992)031<1275:STCLDF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sassen, K., Z. Wang, and D. Liu, 2008: Global distribution of cirrus clouds from CloudSat/Cloud Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) measurements. J. Geophys. Res., 113, D00A12, doi:10.1029/2008JD009972.

    • Search Google Scholar
    • Export Citation
  • Stephens, G. L., and Coauthors, 2002: The CloudSat mission and the A-Train: A new dimension of space-based observations of clouds and precipitation. Bull. Amer. Meteor. Soc., 83, 17711790, doi:10.1175/BAMS-83-12-1771.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sun, Z., and K. P. Shine, 1994: Studies of the radiative properties of ice and mixed-phase clouds. Quart. J. Roy. Meteor. Soc., 120, 111137, doi:10.1002/qj.49712051508.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tang, Y., R. Kleeman, and A. M. Moore, 2004: SST assimilation experiments in a tropical Pacific Ocean model. J. Phys. Oceanogr., 34, 623642, doi:10.1175/3518.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Toth, T. D., and Coauthors, 2013: Investigating enhanced Aqua MODIS aerosol optical depth retrievals over the mid-to-high latitude Southern Oceans through intercomparison with co-located CALIOP, MAN, and AERONET data sets. J. Geophys. Res. Atmos., 118, 47004714, doi:10.1002/jgrd.50311.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vaughan, M. A., and Coauthors, 2009: Fully automated detection of cloud and aerosol layers in the CALIPSO lidar measurements. J. Atmos. Oceanic Technol., 26, 20342050, doi:10.1175/2009JTECHA1228.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vázquez-Cuervo, J., E. M. Armstrong, and A. Harris, 2004: The effect of aerosols and clouds on the retrieval of infrared sea surface temperatures. J. Climate, 17, 39213933, doi:10.1175/1520-0442(2004)017<3921:TEOAAC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Walton, C. C., 1988: Nonlinear multichannel algorithms for estimating sea surface temperature with AVHRR satellite data. J. Appl. Meteor., 27, 115124, doi:10.1175/1520-0450(1988)027<0115:NMAFES>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Walton, C. C., W. G. Pichel, J. F. Sapper, and D. A. May, 1998: The development and operational application of nonlinear algorithms for the measurement of sea surface temperatures with cthe NOAA polar-orbiting environmental satellites. J. Geophys. Res., 103, 27 99928 012, doi:10.1029/98JC02370.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Winker, D. M., M. A. Vaughan, A. Omar, Y. Hu, K. A. Powell, Z. Liu, W. H. Hunt, and S. A. Young, 2009: Overview of the CALIPSO mission and CALIOP data processing algorithms. J. Atmos. Oceanic Technol., 26, 23102323, doi:10.1175/2009JTECHA1281.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Winker, D. M., and Coauthors, 2010: The CALIPSO mission: A global 3D view of aerosols and clouds. Bull. Amer. Meteor. Soc., 91, 12111229, doi:10.1175/2010BAMS3009.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, X., W. P. Menzel, and G. S. Wade, 1999: Estimation of sea surface temperatures using GOES-8/9 radiance measurements. Bull. Amer. Meteor. Soc., 80, 11271138, doi:10.1175/1520-0477(1999)080<1127:EOSSTU>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, P., H. Wei, H.-L. Huang, B. A. Baum, Y. X. Hu, G. W. Kattawar, M. I. Mishchenko, and Q. Fu, 2005: Scattering and absorption property database for nonspherical ice particles in the near- through far-infrared spectral region. Appl. Opt., 44, 55125523, doi:10.1364/AO.44.005512.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Young, S. A., and M. A. Vaughan, 2009: The retrieval of profiles of particulate extinction from Cloud-Aerosol Lidar Infrared Pathfinder Satellite Observations (CALIPSO) data: Algorithm description. J. Atmos. Oceanic Technol., 26, 11051119, doi:10.1175/2008JTECHA1221.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 208 87 0
PDF Downloads 151 58 0

Estimating Infrared Radiometric Satellite Sea Surface Temperature Retrieval Cold Biases in the Tropics due to Unscreened Optically Thin Cirrus Clouds

View More View Less
  • 1 Department of Atmospheric Sciences, University of North Dakota, Grand Forks, North Dakota
  • | 2 Massachusetts Institute of Technology–WHOI Joint Program in Oceanography, Woods Hole, Massachusetts
  • | 3 U.S. Naval Research Laboratory, Monterey, California
  • | 4 Department of Atmospheric Sciences, University of North Dakota, Grand Forks, North Dakota
Restricted access

Abstract

Passive longwave infrared radiometric satellite–based retrievals of sea surface temperature (SST) at instrument nadir are investigated for cold bias caused by unscreened optically thin cirrus (OTC) clouds [cloud optical depth (COD) ≤ 0.3]. Level 2 nonlinear SST (NLSST) retrievals over tropical oceans (30°S–30°N) from Moderate Resolution Imaging Spectroradiometer (MODIS) radiances collected aboard the NASA Aqua satellite (Aqua-MODIS) are collocated with cloud profiles from the Cloud–Aerosol Lidar with Orthogonal Polarization (CALIOP) instrument. OTC clouds are present in approximately 25% of tropical quality-assured (QA) Aqua-MODIS Level 2 data, representing over 99% of all contaminating cirrus found. Cold-biased NLSST (MODIS, AVHRR, and VIIRS) and triple-window (AVHRR and VIIRS only) SST retrievals are modeled based on operational algorithms using radiative transfer model simulations conducted with a hypothetical 1.5-km-thick OTC cloud placed incrementally from 10.0 to 18.0 km above mean sea level for cloud optical depths between 0.0 and 0.3. Corresponding cold bias estimates for each sensor are estimated using relative Aqua-MODIS cloud contamination frequencies as a function of cloud-top height and COD (assuming they are consistent across each platform) integrated within each corresponding modeled cold bias matrix. NLSST relative OTC cold biases, for any single observation, range from 0.33° to 0.55°C for the three sensors, with an absolute (bulk mean) bias between 0.09° and 0.14°C. Triple-window retrievals are more resilient, ranging from 0.08° to 0.14°C relative and from 0.02° to 0.04°C absolute. Cold biases are constant across the Pacific and Indian Oceans. Absolute bias is lower over the Atlantic but relative bias is higher, indicating that this issue persists globally.

Publisher’s Note: This article was revised on 9 February 2017 to include additional funding information that was missing when originally published.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author e-mail: Jared W. Marquis, jared.marquis@und.edu

Abstract

Passive longwave infrared radiometric satellite–based retrievals of sea surface temperature (SST) at instrument nadir are investigated for cold bias caused by unscreened optically thin cirrus (OTC) clouds [cloud optical depth (COD) ≤ 0.3]. Level 2 nonlinear SST (NLSST) retrievals over tropical oceans (30°S–30°N) from Moderate Resolution Imaging Spectroradiometer (MODIS) radiances collected aboard the NASA Aqua satellite (Aqua-MODIS) are collocated with cloud profiles from the Cloud–Aerosol Lidar with Orthogonal Polarization (CALIOP) instrument. OTC clouds are present in approximately 25% of tropical quality-assured (QA) Aqua-MODIS Level 2 data, representing over 99% of all contaminating cirrus found. Cold-biased NLSST (MODIS, AVHRR, and VIIRS) and triple-window (AVHRR and VIIRS only) SST retrievals are modeled based on operational algorithms using radiative transfer model simulations conducted with a hypothetical 1.5-km-thick OTC cloud placed incrementally from 10.0 to 18.0 km above mean sea level for cloud optical depths between 0.0 and 0.3. Corresponding cold bias estimates for each sensor are estimated using relative Aqua-MODIS cloud contamination frequencies as a function of cloud-top height and COD (assuming they are consistent across each platform) integrated within each corresponding modeled cold bias matrix. NLSST relative OTC cold biases, for any single observation, range from 0.33° to 0.55°C for the three sensors, with an absolute (bulk mean) bias between 0.09° and 0.14°C. Triple-window retrievals are more resilient, ranging from 0.08° to 0.14°C relative and from 0.02° to 0.04°C absolute. Cold biases are constant across the Pacific and Indian Oceans. Absolute bias is lower over the Atlantic but relative bias is higher, indicating that this issue persists globally.

Publisher’s Note: This article was revised on 9 February 2017 to include additional funding information that was missing when originally published.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author e-mail: Jared W. Marquis, jared.marquis@und.edu
Save