• Andreas, E. L, 1988: Estimating over snow and sea ice from meteorological data. J. Opt. Soc. Amer., 5A, 481495, doi:10.1364/JOSAA.5.000481.

  • Arneodo, A., and Coauthors, 1996: Structure functions in turbulence, in various flow configurations, at Reynolds number between 30 and 5000, using extended self-similarity. Europhys. Lett., 34, 411, doi:10.1209/epl/i1996-00472-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barat, J., and F. Bertin, 1984: Simultaneous measurements of temperature and velocity fluctuations within clear air turbulence layers: Analysis of the estimate of dissipation rate by remote sensing techniques. J. Atmos. Sci., 41, 16131619, doi:10.1175/1520-0469(1984)041<1613:SMOTAV>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brettle, M. J., and J. F. P. Galvin, 2003: Back to basics: Radiosondes: Part 1—The instrument. Weather, 58, 336341, doi:10.1256/wea.126.02A.

  • Burk, S. D., 1980: Refractive index structure parameters: Time-dependent calculations using a numerical boundary-layer model. J. Appl. Meteor., 19, 562576, doi:10.1175/1520-0450(1980)019<0562:RISPTD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cheinet, S., and A. P. Siebesma, 2009: Variability of local structure parameters in the convective boundary layer. J. Atmos. Sci., 66, 10021017, doi:10.1175/2008JAS2790.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cherubini, T., S. Businger, R. Lyman, and M. Chun, 2008: Modeling optical turbulence and seeing over Mauna Kea. J. Appl. Meteor. Climatol., 47, 11401155, doi:10.1175/2007JAMC1487.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Clayson, C. A., and L. Kantha, 2008: On turbulence and mixing in the free atmosphere inferred from high-resolution soundings. J. Atmos. Oceanic Technol., 25, 833852, doi:10.1175/2007JTECHA992.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Coulman, C. E., J. Vernin, Y. Coqueugniot, and J.-L. Caccia, 1988: Outer scale of turbulence appropriate to modeling refractive-index structure profiles. Appl. Opt., 27, 155, doi:10.1364/AO.27.000155.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Crain, C. M., 1950: Apparatus for recording fluctuations in the refractive index of the atmosphere at 3.2 centimeters wave-length. Rev. Sci. Instrum., 21, 456457, doi:10.1063/1.1745614.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Crain, C. M., 1955: Survey of airborne microwave refractometer measurements. Proc. IRE, 43, 14051411, doi:10.1109/JRPROC.1955.277956.

  • D’Auria, G., F. S. Marzano, and U. Merlo, 1993: Model for estimating the refractive-index structure constant in clear-air intermittent turbulence. Appl. Opt., 32, 26742680, doi:10.1364/AO.32.002674.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Deardorff, J. W., 1974: Three-dimensional numerical study of turbulence in an entraining mixed layer. Bound.-Layer Meteor., 7, 199226, doi:10.1007/BF00227913.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ebisuzaki, W., 2004: Data documentation for NOAA Operational Model Archive and Distribution System (NOMADS): North American Regional Reanalysis (NARR) “merge” data set; Dataset DSI-6175, NOAA, 11 pp. [Available online at http://nomads.ncdc.noaa.gov/docs/ncdc-narrdsi-6175-final.pdf.]

  • Facheris, L., F. Cuccoli, and F. Argenti, 2008: Normalized differential spectral attenuation (NDSA) measurements between two LEO satellites: Performance and analysis in the Ku/K-bands. IEEE Trans. Geosci. Remote Sens., 46, 23452356, doi:10.1109/TGRS.2008.917215.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Galvin, J. F. P., 2003: Back to basics: Radiosondes: Part 2—Using and interpreting the data. Weather, 58, 387395, doi:10.1256/wea.126.02B.

  • Ghosh, A. K., A. R. Jain, and V. Sivakumar, 2003: Simultaneous MST radar and radiosonde measurements at Gadanki (13.5°N, 79.2°E) 2. Determination of various atmospheric turbulence parameters. Radio Sci., 38, 1014, doi:10.1029/2000RS002528.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gossard, E. E., R. B. Chadwick, W. D. Neff, and K. P. Moran, 1982: The use of ground-based Doppler radars to measure gradients, fluxes and structure parameters in elevated layers. J. Appl. Meteor., 21, 211226, doi:10.1175/1520-0450(1982)021<0211:TUOGBD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hill, R. J., R. A. Bohlander, S. F. Clifford, R. W. McMillan, J. T. Priestly, and W. P. Schoenfeld, 1988: Turbulence-induced millimeter-wave scintillation compared with micrometeorological measurements. IEEE Trans. Geosci. Remote Sens., 26, 330342, doi:10.1109/36.3035.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holdrige, D., J. Prell, M. Ritsche and R. Coulter, 2011: Balloon-Borne Sounding System (SONDE) handbook. ARM Tech. Rep. DOE/SC-ARM/TR-029, 27 pp.

  • Hufnagel, R. E., 1978: Propagation through atmospheric turbulence. The Infrared Handbook, W. L. Wolfe and G. J. Zissis, Eds., Office of Naval Research, 1–56.

  • Ishimaru, A., 1999: Wave Propagation and Scattering in Random Media. John Wiley & Sons, 600 pp.

    • Crossref
    • Export Citation
  • Karasawa, Y., M. Yamada, and J. E. Allnut, 1988: A new prediction method for tropospheric scintillation on Earth-space paths. IEEE Trans. Antennas Propag., 36, 16081614, doi:10.1109/8.9712.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kolmogorov, N., 1962: A refinement of previous hypotheses concerning the local structure of turbulence in a viscous incompressible fluid at high Reynolds number. J. Fluid Mech., 13, 8285, doi:10.1017/S0022112062000518.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lüdi, A., and A. Magun, 2002: Near-horizontal line-of-sight millimeter-wave propagation measurements for the determination of outer length scales and anisotropy of turbulent refractive index fluctuations in the lower troposphere. Radio Sci., 37, 1028, doi:10.1029/2001RS002493.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Luers, J. K., 1997: Temperature error of the Vaisala RS90 radiosonde. J. Atmos. Oceanic Technol., 14, 15201532, doi:10.1175/1520-0426(1997)014<1520:TEOTVR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Martini, E., A. Freni, F. Cuccoli, and L. Facheris, 2006: The impact of tropospheric scintillation in the Ku/K bands on the communications between two LEO satellites in a radio occultation geometry. IEEE Trans. Geosci. Remote Sens., 44, 20632071, doi:10.1109/TGRS.2006.872143.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Masciadri, E., J. Vernin, and P. Bougeault, 1999a: 3D mapping of optical turbulence using an atmospheric numerical model. I. A useful tool for the ground-based astronomy. Astron. Astrophys. Suppl. Ser., 137 185202, doi:10.1051/aas:1999474.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Masciadri, E., J. Vernin, and P. Bougeault, 1999b: 3D mapping of optical turbulence using an atmospheric numerical model. II. First results at Cerro Paranal. Astron. Astrophys. Suppl. Ser., 137, 203216, doi:10.1051/aas:1999475.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mason, P. J., 1989: Large-eddy simulation of the convective atmospheric boundary layer. J. Atmos. Sci., 46, 14921516, doi:10.1175/1520-0469(1989)046<1492:LESOTC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moeng, C.-H., 1984: A large-eddy-simulation model for the study of planetary boundary-layer turbulence. J. Atmos. Sci., 41, 20522062, doi:10.1175/1520-0469(1984)041<2052:ALESMF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Monin, A. S., and A. M. Obukhov, 1954: Basic laws of turbulent mixing in the surface layer of the atmosphere. Tr. Geofiz. Inst., Akad. Nauk SSSR, 24, 163187.

    • Search Google Scholar
    • Export Citation
  • Nath, D., M. Venkat Ratnam, A. K. Patra, B. V. Krishna Murthy, and S. V. Bhaskar Rao, 2010: Turbulence characteristics over tropical station Gadanki (13.5°N, 79.2°E) estimated using high-resolution GPS radiosonde data. J. Geophys. Res., 115, D07102, doi:10.1029/2009JD012347.

    • Search Google Scholar
    • Export Citation
  • Nightingale, N. S., and D. F. Buscher, 1991: Interferometric seeing measurements at the La Palma Observatory. Mon. Not. Roy. Astron. Soc., 251, 155166, doi:10.1093/mnras/251.1.155.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ottersten, H., 1969: Mean vertical gradient of potential refractive index in turbulent mixing and radar detection of CAT. Radio Sci., 4, 12471249, doi:10.1029/RS004i012p01247.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Otung, I. E., 1996: Prediction of tropospheric amplitude scintillation on a satellite link. IEEE Trans. Antennas Propag., 44, 16001608, doi:10.1109/8.546246.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peltier, L. J., and J. C. Wyngaard, 1995: Structure-function parameters in the convective boundary layer from large-eddy simulation. J. Atmos. Sci., 52, 36413660, doi:10.1175/1520-0469(1995)052<3641:SPITCB>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pereira, C., C. Ghiringhelli, and D. Vanhoenacker-Janvier, 2015: Sensitivity of tropospheric scintillation models to the accuracy of radiosonde data. 2015 9th European Conference on Antennas and Propagation (EuCAP), IEEE, 3205–3208.

  • Rees, J. M., 1991: On the characteristics of eddies in the stable atmospheric boundary layer. Bound.-Layer Meteor., 55, 325343, doi:10.1007/BF00119808.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rosenberg, N. W., and E. M. Dewan, 1975: Stratospheric turbulence and vertical effective diffusion coefficients. Air Force Cambridge Research Laboratories Tech. Rep. AFCRL-TR-75-0519, 13 pp.

  • Siebesma, A. P., and A. M. Holtslag, 1996: Model impacts of entrainment and detrainment rates in shallow cumulus convection. J. Atmos. Sci., 53, 23542364, doi:10.1175/1520-0469(1996)053<2354:MIOEAD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, E. K., and S. Weindtraub, 1953: The constants in the equation for atmospheric refractive index at radio frequencies. Proc. IRE, 41, 10351037, doi:10.1109/JRPROC.1953.274297.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stephens, G. L., 1984: The parameterization of radiation for numerical weather prediction and climate models. Mon. Wea. Rev., 112, 826867, doi:10.1175/1520-0493(1984)112<0826:TPORFN>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tatarskii, V. I., 1961: Wave Propagation in a Turbulent Medium. McGraw-Hill, 285 pp.

  • Taylor, G. I., 1931: Effect of variation in density on the stability of superposed streams of fluid. Proc. Roy. Soc. London, 132A, 499523, doi:10.1098/rspa.1931.0115.

    • Search Google Scholar
    • Export Citation
  • Thorpe, S. A., 1977: Turbulence and mixing in a Scottish Loch. Philos. Trans. Roy. Soc. London, 286A, 125181, doi:10.1098/rsta.1977.0112.

    • Search Google Scholar
    • Export Citation
  • Turner, J. S., 1973: Buoyancy Effects in Fluid. Cambridge University Press, 368 pp.

    • Crossref
    • Export Citation
  • Vanhoenacker-Janvier, D., C. Oestges, B. Montenegro-Villacieros, R. Van Malderen, and H. De Backer, 2009: Scintillation prediction using improved pre-processed radiosounding data. 2009 3rd European Conference on Antennas and Propagation, IEEE, 3849–3851.

  • Van Zandt, T. E., J. L. Green, K. S. Gage, and W. L. Clark, 1978: Vertical profiles of refractivity turbulence structure constant: Comparison of observations by the Sunset Radar with a new theoretical model. Radio Sci., 13, 819829, doi:10.1029/RS013i005p00819.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Van Zandt, T. E., K. S. Gage, and J. Warnock, 1981: An improved model for the calculation of profiles of and n in the free atmosphere from background profiles of wind, temperature and humidity. Preprints, 20th Conf. on Radar Meteorology, Boston, MA, Amer. Meteor. Soc., 129135.

  • Vasseur, H., 1999: Prediction of tropospheric scintillation on satellite links from radiosonde data. IEEE Trans. Antennas Propag., 47, 293301, doi:10.1109/8.761069.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vasseur, H., and D. Vanhoenacker, 1998: Characterisation of tropospheric turbulent layers from radiosonde data. Electron. Lett., 34, 318319, doi:10.1049/el:19980248.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wesely, M. L., 1976: The combined effect of temperature and humidity fluctuations on refractive index. J. Appl. Meteor., 15, 4349, doi:10.1175/1520-0450(1976)015<0043:TCEOTA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wheelon, A. D., 2001: Geometrical Optics. Vol.1, Electromagnetic Scintillation, Cambridge University Press, 455 pp.

    • Crossref
    • Export Citation
  • Wheelon, A. D., 2003: Weak Scattering. Vol. 2, Electromagnetic Scintillation, Cambridge University Press, 440 pp.

    • Crossref
    • Export Citation
  • Wyngaard, J. C., W. T. Pennell, D. H. Lenschow, and M. A. Lemone, 1978: The temperature-humidity covariance budget in the convective boundary layer. J. Atmos. Sci., 35, 4758, doi:10.1175/1520-0469(1978)035<0047:TTHCBI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ziad, A., M. Schock, G. A. Chanan, M. Troy, R. Dekany, B. F. Lane, J. Borgnino, and F. Martin, 2004: Comparison of measurements of the outer scale of turbulence by three different techniques. Appl. Opt., 43, 23162324, doi:10.1364/AO.43.002316.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 8 8 8
PDF Downloads 12 12 12

Derivation of Clear-Air Turbulence Parameters from High-Resolution Radiosonde Data

View More View Less
  • 1 Department of Information Engineering and Mathematics, University of Siena, Siena, and Wave Up S.r.l., Florence, Italy
  • | 2 Department of Information Engineering, University of Florence, Florence, Italy
  • | 3 Radar and Surveillance System National Laboratory, National Interuniversity Consortium for Telecommunications (CNIT), Pisa, Italy
  • | 4 Department of Information Engineering, University of Florence, Florence, Italy
Restricted access

Abstract

The knowledge of atmospheric refractive index structure constant () profiles is fundamental to determine the intensity of turbulence, and hence the impact of the scintillation impairment on the signals propagating in the troposphere. However, their relation with atmospheric variables is not straightforward, and profiles based on statistical considerations are normally employed. This can be a shortcoming when performing simulations for which scintillation disturbances need to be consistent with the assumed atmospheric conditions. To overcome this limitation, this work describes a procedure to obtain an estimate of the refractive index structure constant profile of clear-air turbulence under given atmospheric conditions. The procedure is based on the application of the vertical gradient approach to high-resolution radiosonde data. Since turbulence is known to be confined to vertically thin layers, a preliminary identification of turbulent layers is required. This is accomplished by analyzing the profiles of the Richardson number. The value of the outer scale length is estimated using the Thorpe length calculated from the potential temperature profile. The procedure is applied to high-resolution radiosonde data that have been acquired from the Stratosphere–Troposphere Processes and their Role in Climate (SPARC) Data Center, and the obtained results are consistent with measured profiles previously published in the literature.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author e-mail: Luca Facheris, luca.facheris@unifi.it

Abstract

The knowledge of atmospheric refractive index structure constant () profiles is fundamental to determine the intensity of turbulence, and hence the impact of the scintillation impairment on the signals propagating in the troposphere. However, their relation with atmospheric variables is not straightforward, and profiles based on statistical considerations are normally employed. This can be a shortcoming when performing simulations for which scintillation disturbances need to be consistent with the assumed atmospheric conditions. To overcome this limitation, this work describes a procedure to obtain an estimate of the refractive index structure constant profile of clear-air turbulence under given atmospheric conditions. The procedure is based on the application of the vertical gradient approach to high-resolution radiosonde data. Since turbulence is known to be confined to vertically thin layers, a preliminary identification of turbulent layers is required. This is accomplished by analyzing the profiles of the Richardson number. The value of the outer scale length is estimated using the Thorpe length calculated from the potential temperature profile. The procedure is applied to high-resolution radiosonde data that have been acquired from the Stratosphere–Troposphere Processes and their Role in Climate (SPARC) Data Center, and the obtained results are consistent with measured profiles previously published in the literature.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author e-mail: Luca Facheris, luca.facheris@unifi.it
Save