• Balanis, C. A., 1997: Antenna Theory: Analysis and Design. 2nd ed. Wiley, 941 pp.

  • Barrick, D. E., 1973: FM/CW radar signals and digital processing. NOAA Tech. Rep. ERL 283-WPL 26, 22 p.

  • Carter, D. A., K. S. Gage, W. L. Ecklund, W. M. Angevine, P. E. Johnston, A. C. Riddle, J. Wilson, and C. R. Williams, 1995: Developments in UHF lower tropospheric wind profiling at NOAA’s Aeronomy Laboratory. Radio Sci., 30, 9771001, doi:10.1029/95RS00649.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chadwick, R. B., and R. G. Strauch, 1979: Processing of FM-CW Doppler radar signals from distributed targets. IEEE Trans. Aerosp. Electron. Syst., AES-15, 185189, doi:10.1109/TAES.1979.308817.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chadwick, R. B., K. P. Moran, R. G. Strauch, G. E. Morrison, and W. C. Campbell, 1976: A new radar for measuring winds. Bull. Amer. Meteor. Soc., 57, 11201125, doi:10.1175/1520-0477(1976)057<1120:ANRFMW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Doviak, R. J., and D. S. Zrnić, 1993: Doppler Radar and Weather Observations. 2nd ed. Academic Press, 562 pp.

  • Gage, K. S., and B. B. Balsley, 1978: Doppler radar probing of the clear atmosphere. Bull. Amer. Meteor. Soc., 59, 10741093, doi:10.1175/1520-0477(1978)059<1074:DRPOTC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Harris, F. J., 1978: On the use of windows for harmonic analysis with the discrete Fourier transform. Proc. IEEE, 66, 5183, doi:10.1109/PROC.1978.10837.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lundquist, J. D., P. J. Neiman, B. Martner, A. B. White, D. J. Gottas, and F. M. Ralph, 2008: Rain versus snow in the Sierra Nevada, California: Comparing Doppler profiling radar and surface observations of melting level. J. Hydrometeor., 9, 194211, doi:10.1175/2007JHM853.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McLaughlin, S. A., 2003: A new data acquisition system for the U. S. Army FM-CW radar: Still a great way to see half-meter resolution. 12th Symp. on Meteorological Observations and Instrumentation, Long Beach, CA, Amer. Meteor. Soc., P1.20. [Available online at https://ams.confex.com/ams/annual2003/webprogram/Paper58607.html.]

  • NOAA, 2015a: Hydrometeorology Testbed (HMT). Accessed 2 December 2015. [Available online at http://hmt.noaa.gov/.]

  • NOAA, 2015b: Profiler network and image library. Accessed 2 December 2015. [Available online at http://www.esrl.noaa.gov/psd/data/obs/datadisplay/.]

  • Petitdidier, M., A. Sy, A. Garrouste, and J. Delcourt, 1997: Statistical characteristics of the noise power spectral density in UHF and VHF wind profilers. Radio Sci., 32, 12291247, doi:10.1029/97RS00250.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Riddle, A. C., L. M. Hartten, D. A. Carter, P. E. Johnston, and C. R. Williams, 2012: A minimum threshold for wind profiler signal-to-noise ratios. J. Atmos. Oceanic Technol., 29, 889895, doi:10.1175/JTECH-D-11-00173.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Strauch, R. G., 1976: Theory and application of the FM-CW Doppler radar. Ph.D. thesis, University of Colorado, 97 pp.

  • Stull, R. B., 2000: Meteorology for Scientists and Engineers. 2nd ed. Brooks/Cole, 502 pp.

  • Ulbrich, C. W., and D. Atlas, 1998: Rainfall microphysics and radar properties: Analysis methods for drop size spectra. J. Appl. Meteor., 37, 912923, doi:10.1175/1520-0450(1998)037<0912:RMARPA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • White, A. B., J. R. Jordan, B. E. Martner, F. M. Ralph, and B. W. Bartram, 2000: Extending the dynamic range of an S-band radar for cloud and precipitation studies. J. Atmos. Oceanic Technol., 17, 12261234, doi:10.1175/1520-0426(2000)017<1226:ETDROA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • White, A. B., D. J. Gottas, F. M. Ralph, and P. J. Neiman, 2001: Operational bright-band snow level detection using Doppler radar. U.S. Patent 6,615,140, filed 30 August 2001, and issued 2 September 2003.

  • White, A. B., D. J. Gottas, E. T. Strem, F. M. Ralph, and P. J. Neiman, 2002: An automated brightband height detection algorithm for use with Doppler radar spectral moments. J. Atmos. Oceanic Technol., 19, 687697, doi:10.1175/1520-0426(2002)019<0687:AABHDA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • White, A. B., D. J. Gottas, A. F. Henkel, P. J. Niman, F. M. Ralph, and S. I. Gutman, 2010: Developing a performance measure for snow-level forecasts. J. Hydrometeor., 11, 739753, doi:10.1175/2009JHM1181.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • White, A. B., and Coauthors, 2013: A twenty-first-century California observing network for monitoring extreme weather events. J. Atmos. Oceanic Technol., 30, 15851603, doi:10.1175/JTECH-D-12-00217.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, J., and Coauthors, 2011: National Mosaic and Multi-Sensor QPE (NMQ) system: Description, results, and future plans. Bull. Amer. Meteor. Soc., 92, 13211338, doi:10.1175/2011BAMS-D-11-00047.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 12 12 12
PDF Downloads 5 5 5

The NOAA FM-CW Snow-Level Radar

View More View Less
  • 1 Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, and NOAA/Earth System Research Laboratory/Physical Sciences Division, Boulder, Colorado
  • | 2 NOAA/Earth System Research Laboratory/Physical Sciences Division, Boulder, Colorado
  • | 3 Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, and NOAA/Earth System Research Laboratory/Physical Sciences Division, Boulder, Colorado
  • | 4 NOAA/Earth System Research Laboratory/Physical Sciences Division, Boulder, Colorado
Restricted access

Abstract

A vertically pointing radar for monitoring radar brightband height (BBH) has been developed. This new radar utilizes frequency-modulated continuous wave (FM-CW) techniques to provide high-resolution data at a fraction of the cost of comparable pulsed radars. This S-band radar provides details of the vertical structure of precipitating clouds, with full Doppler information. Details of the radar design are presented along with observations from one storm. Results from a calibration using these storm data show the radar meets the design goals. Eleven of these radars have been deployed and provide BBH data in near–real time.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author e-mail: Paul E. Johnston, paul.e.johnston@noaa.gov

Abstract

A vertically pointing radar for monitoring radar brightband height (BBH) has been developed. This new radar utilizes frequency-modulated continuous wave (FM-CW) techniques to provide high-resolution data at a fraction of the cost of comparable pulsed radars. This S-band radar provides details of the vertical structure of precipitating clouds, with full Doppler information. Details of the radar design are presented along with observations from one storm. Results from a calibration using these storm data show the radar meets the design goals. Eleven of these radars have been deployed and provide BBH data in near–real time.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author e-mail: Paul E. Johnston, paul.e.johnston@noaa.gov
Save