• Aanderaa Instruments, 2000: Water level/temperature sensor WLTS. Data Sheet D325, 4 pp.

  • Abbott, R. C., 1979: A versatile oceanographic data-logger. OCEANS’79, IEEE, 265–268, doi:10.1109/OCEANS.1979.1151197.

  • Atmel Corporation, 2003: Efficient C coding for AVR. Application Note AVR035, 22 pp.

  • Atmel Corporation, 2005: Enhancing ADC resolution by oversampling. Application Note AVR121, 14 pp.

  • Atmel Corporation, 2008: Xmodem CRC receive utility for AVR. Application Note AVR350, 7 pp.

  • Atmel Corporation, 2010: PDI programming driver. Application Note AVR1612, 15 pp.

  • Atmel Corporation, 2014: Low power consumption techniques for XMEGA XPLAINED kits. Atmel Application Note AT11487, 22 pp.

  • Atmel Corporation, 2015: Serial bootloader user guide. Atmel Application Note AVR2054, 23 pp.

  • Behn, M., V. Hohreiter, and A. Muschinski, 2008: A scalable datalogging system with serial interfaces and integrated GPS time stamping. J. Atmos. Oceanic Technol., 25, 15681578, doi:10.1175/2007JTECHA1024.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Benson, B., G. Chang, D. Manov, B. Graham, and R. Kastner, 2006: Design of a low-cost acoustic modem for moored oceanographic applications. WUWNet’06: Proceedings of the 1st ACM International Workshop on Underwater Networks, Association for Computing Machinery, 7178, doi:10.1145/1161039.1161054.

    • Search Google Scholar
    • Export Citation
  • Brewer, P. G., and J. P. Riley, 1965: The automatic determination of nitrate in sea water. Deep-Sea Res. Oceanogr. Abstr., 12, 765772, doi:10.1016/0011-7471(65)90797-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chavez, F. P., D. Wright, R. Herlien, M. Kelley, F. Shane, and P. G. Strutton, 2000: A device for protecting moored radiometers from fouling. J. Atmos. Oceanic Technol., 17, 215219, doi:10.1175/1520-0426(2000)017<0215:ADFPMS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Claustre, H., Ed., 2011: Bio-optical sensors on Argo floats. IOCCG Rep. 11, 89 pp.

  • del Río, J., and Coauthors, 2014: Standards-based plug & work for instruments in ocean observing systems. IEEE J. Oceanic Eng., 39, 430443, doi:10.1109/JOE.2013.2273277.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Doebelin, E. O., 1990: Measurement Systems: Application and Design. 4th ed. McGraw-Hill, 960 pp.

  • Gallimore, E., J. Partan, I. Vaughn, S. Singh, J. Shusta, and L. Freitag, 2010: The WHOI Micromodem-2: A scalable system for acoustic communications and networking. Proc. OCEANS 2010, Seattle, WA, IEEE, 7 pp., doi:10.1109/oceans.2010.5664354.

    • Crossref
    • Export Citation
  • Greenberg, I., 2007: Processing: Creative Coding and Computational Art. Friends of ED, 840 pp.

  • Hosom, D. S., R. A. Weller, R. E. Payne, and K. E. Prada, 1995: The IMET (improved meteorology) ship and buoy systems. J. Atmos. Oceanic Technol., 12, 527540, doi:10.1175/1520-0426(1995)012<0527:TIMSAB>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Johnson, K. S., and L. J. Coletti, 2002: In situ ultraviolet spectrophotometry for high resolution and long-term monitoring of nitrate, bromide and bisulfide in the ocean. Deep-Sea Res. I, 49, 12911305, doi:10.1016/S0967-0637(02)00020-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kanwisher, J., 1959: Polarographic oxygen electrode. Limnol. Oceanogr., 4, 210217, doi:10.4319/lo.1959.4.2.0210.

  • Kecy, C. D., and Coauthors, 2013: Open source instrumentation nodes for the greater oceanographic community. Proc. OCEANS 2013, San Diego, CA, IEEE, 7 pp.

  • Krishfield, R., J. Toole, A. Proshutinsky, and M.-L. Timmermans, 2008: Automated ice-tethered profilers for seawater observations under pack ice in all seasons. J. Atmos. Oceanic Technol., 25, 20912095, doi:10.1175/2008JTECHO587.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Laney, S. R., 2005: A generalized real-time signal processor for oceanographic applications. Research papers of the Link Foundation Fellows, Vol. 4, B. J. Thompson, Ed., Link Foundation, 333–349.

    • Search Google Scholar
    • Export Citation
  • Laney, S. R., R. A. Krishfield, J. M. Toole, T. R. Hammar, C. J. Ashjian, and M.-L. Timmermans, 2014: Assessing algal biomass and bio-optical distributions in perennially ice-covered polar ocean ecosystems. Polar Sci., 8, 7385, doi:10.1016/j.polar.2013.12.003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Leap, K. J., Jr., and L. A. Dedini, 1982: The design of a microprocessor-based data logger. USGS Open-File Rep. 82-167, 86 pp.

    • Crossref
    • Export Citation
  • Lotliker, A. A., M. M. Omand, A. J. Lucas, S. R. Laney, A. Mahadevan, and M. Ravichandran, 2016: Penetrative radiative flux in the Bay of Bengal. Oceanography, 29, 214221, doi:10.5670/oceanog.2016.53.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Manov, D., G. Chang, and T. D. Dickey, 2004: Methods for reducing biofouling on moored optical sensors. J. Atmos. Oceanic Technol., 21, 958968, doi:10.1175/1520-0426(2004)021<0958:MFRBOM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McNamara, K. P., X. Li, A. D. Stull, and Z. Rosenzweig, 1998: Fiber-optic oxygen sensor based on the fluorescence quenching of tris (5-acrylamido, 1,10 phenanthroline) ruthenium chloride. Anal. Chim. Acta, 361, 7383, doi:10.1016/S0003-2670(97)00703-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Myklebust, G., 2004: The AVR microcontroller and C compiler co-design. ATMEL Corporation, 6 pp. [Available online at http://www.atmel.com/images/compiler.pdf.]

  • O’Reilly, T. C., and Coauthors, 2009: Instrument interface standards for interoperable ocean sensor networks. Proc. OCEANS 2009—Europe, Bremen, Germany, IEEE, 10 pp., doi:10.1109/oceanse.2009.5278251.

    • Crossref
    • Export Citation
  • Pearce, J. M., 2012: Building research equipment with free, open-source hardware. Science, 337, 13031304, doi:10.1126/science.1228183.

  • Pinkel, R., M. A. Goldin, J. A. Smith, O. M. Sun, A. A. Aja, M. N. Bui, and T. Hughen, 2011: The Wirewalker: A vertically profiling instrument carrier powered by ocean waves. J. Atmos. Oceanic Technol., 28, 426435, doi:10.1175/2010JTECHO805.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pittini, R., and M. Hernes, 2012: Pressure-tolerant power electronics for deep and ultradeep water. Oil Gas Facil., 1, 4752.

  • Plueddemann, A. J., A. L. Olen, R. C. Singer, and S. P. Smith, 1992: A data processing module for acoustic Doppler current meters. WHOI Tech. Rep. 92-05, 71 pp.

    • Crossref
    • Export Citation
  • Poteau, X., and B. D. MacCraith, 2003: Ratiometric sensor for dissolved oxygen in seawater. Opto-Ireland 2002: Optics and Photonics Technologies and Applications, T. J. Glynn, Ed., International Society for Optical Engineering (SPIE Proceedings, Vol. 4876), 886, doi:10.1117/12.464211.

    • Crossref
    • Export Citation
  • Saether, K., and I. Fredriksen, 2008: Introducing a new breed of microcontrollers for 8/16-bit applications. Atmel Corporation White Paper 7926A–AVR, 15 pp.

  • Song, E. Y., and K. B. Lee, 2009: A standard-based global ocean monitoring system. Proc. ICEMI ’09: Ninth Int. Conf. on Electronic Measurement and Instruments, Beijing, China, IEEE, 1-445–1-449, doi:10.1109/icemi.2009.5274835.

    • Crossref
    • Export Citation
  • Toma, D. M., T. O’Reilly, J. del Río, K. Headley, A. Manuel, A. Bröring, and D. Edgington, 2011: Smart sensors for interoperable Smart Ocean Environment. Proc. OCEANS 2011—Spain, Santander, Spain, IEEE, 4 pp., doi:10.1109/Oceans-Spain.2011.6003654.

    • Crossref
    • Export Citation
  • Toole, J., and Coauthors, 2006: Ice-tethered profilers sample the upper Arctic Ocean. Eos, Trans. Amer. Geophys. Union, 87, 434438, doi:10.1029/2006EO410003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wesson, J., K. D. Saunders, B. Bricker, and H. Perkins, 1999: A miniature fluorometer for oceanographic applications. J. Atmos. Oceanic Technol., 16, 16301634, doi:10.1175/1520-0426(1999)016<1630:AMFFOA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 459 214 0
PDF Downloads 355 156 1

A General-Purpose Microcontroller-Based Framework for Integrating Oceanographic Sensors, Instruments, and Peripherals

View More View Less
  • 1 Biology Department, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts
Restricted access

Abstract

Sensors and instruments for basic oceanographic properties are becoming increasingly sophisticated, which both simplifies and complicates their use in field studies. This increased sophistication disproportionately affects smaller-scale observational efforts that are less likely to be well supported technically but which need to integrate instruments, sensors, and commonly needed peripheral devices in ways not envisioned by their manufacturers. A general-purpose hardware and software framework was developed around a widely used family of low-power microcontrollers to lessen the technical expertise and customization required to integrate sensors, instruments, and peripherals, and thus simplify such integration scenarios. Both the hardware and associated firmware development tools provide a range of features often required in such scenarios: serial data interfaces, analog inputs and outputs, logic lines and power-switching capability, nonvolatile storage of data and parameters for sampling or configuration, and serial communication interfaces to supervisory or telemetry systems. The microcontroller and additional components needed to implement this integration framework are small enough to encapsulate in standard cable splices, creating a small form factor “smart cable” that can be readily wired and programmed for a range of integration needs. An application programming library developed for this hardware provides skeleton code for functions commonly desired when integrating sensors, instruments, and peripherals. This minimizes the firmware programming expertise needed to apply this framework in many integration scenarios and thus streamlines the development of firmware for different field applications. Envisioned applications are in field programs where significant technical instrumentation expertise is unavailable or not cost effective.

Denotes content that is immediately available upon publication as open access.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author e-mail: Samuel Laney, slaney@whoi.edu

Abstract

Sensors and instruments for basic oceanographic properties are becoming increasingly sophisticated, which both simplifies and complicates their use in field studies. This increased sophistication disproportionately affects smaller-scale observational efforts that are less likely to be well supported technically but which need to integrate instruments, sensors, and commonly needed peripheral devices in ways not envisioned by their manufacturers. A general-purpose hardware and software framework was developed around a widely used family of low-power microcontrollers to lessen the technical expertise and customization required to integrate sensors, instruments, and peripherals, and thus simplify such integration scenarios. Both the hardware and associated firmware development tools provide a range of features often required in such scenarios: serial data interfaces, analog inputs and outputs, logic lines and power-switching capability, nonvolatile storage of data and parameters for sampling or configuration, and serial communication interfaces to supervisory or telemetry systems. The microcontroller and additional components needed to implement this integration framework are small enough to encapsulate in standard cable splices, creating a small form factor “smart cable” that can be readily wired and programmed for a range of integration needs. An application programming library developed for this hardware provides skeleton code for functions commonly desired when integrating sensors, instruments, and peripherals. This minimizes the firmware programming expertise needed to apply this framework in many integration scenarios and thus streamlines the development of firmware for different field applications. Envisioned applications are in field programs where significant technical instrumentation expertise is unavailable or not cost effective.

Denotes content that is immediately available upon publication as open access.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author e-mail: Samuel Laney, slaney@whoi.edu
Save