• Agnew, D. C., and K. M. Larson, 2007: Finding the repeat times of the GPS constellation. GPS Solutions, 11, 7176, doi:10.1007/s10291-006-0038-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Anderson, K. D., 2000: Determination of water level and tides using interferometric observations of GPS signals. J. Atmos. Oceanic Technol., 17, 11181127, doi:10.1175/1520-0426(2000)017<1118:DOWLAT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Arns, A., T. Wahl, I. D. Haigh, J. Jensen, and C. Pattiaratchi, 2013: Estimating extreme water level probabilities: A comparison of the direct methods and recommendations for best practise. Coastal Eng., 81, 5166, doi:10.1016/j.coastaleng.2013.07.003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Benton, C. J., and C. N. Mitchell, 2011: Isolating the multipath component in GNSS signal-to-noise data and locating reflecting objects. Radio Sci., 46, RS6002, doi:10.1029/2011RS004767.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Blewitt, G., C. Kreemer, W. C. Hammond, and J. Gazeaux, 2016: MIDAS robust estimator for accurate GPS station velocities without step detection. J. Geophys. Res. Solid Earth, 121, 20542068, doi:10.1002/2015JB012552.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Böhm, J., B. Werl, and H. Schuh, 2006: Troposphere mapping functions for GPS and very long baseline interferometry from European Centre for Medium-Range Weather Forecasts operational analysis data. J. Geophys. Res., 111, B02406, doi:10.1029/2005JB003629.

    • Search Google Scholar
    • Export Citation
  • Böhm, J., G. Möller, M. Schindelegger, G. Pain, and R. Weber, 2015: Development of an improved empirical model for slant delays in the troposphere (GPT2w). GPS Solutions, 19, 433441, doi:10.1007/s10291-014-0403-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holgate, S. J., and Coauthors, 2013: New data systems and products at the Permanent Service for Mean Sea Level. J. Coastal Res., 29, 493504, doi:10.2112/JCOASTRES-D-12-00175.1.

    • Search Google Scholar
    • Export Citation
  • Hunter, J. R., 2003: On the temperature correction of the Aquatrak acoustic tide gauge. J. Atmos. Oceanic Technol., 20, 12301235, doi:10.1175/1520-0426(2003)020<1230:OTTCOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • IOC, 2006: Manual on sea level measurement and interpretation, volume IV. IOC Manuals and Guides 14, JCOMM Tech Rep. 31, WMO/TD-1339, 80 pp. [Available online at http://unesdoc.unesco.org/images/0014/001477/147773e.pdf.]

  • King, M. A., C. S. Watson, N. T. Penna, and P. J. Clarke, 2008: Subdaily signals in GPS observations and their effect at semiannual and annual periods. Geophys. Res. Lett., 35, L03302, doi:10.1029/2007GL032252.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Larson, K. M., E. E. Small, E. D. Gutmann, A. L. Bilich, J. J. Braun, and V. U. Zavorotny, 2008: Use of GPS receivers as a soil moisture network for water cycle studies. Geophys. Res. Lett., 35, L24405, doi:10.1029/2008GL036013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Larson, K. M., E. D. Gutmann, V. U. Zavorotny, J. J. Braun, M. W. Williams, and F. G. Nievinski, 2009: Can we measure snow depth with GPS receivers? Geophys. Res. Lett., 36, L17502, doi:10.1029/2009GL039430.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Larson, K. M., J. J. Braun, E. E. Small, V. U. Zavorotny, E. D. Gutmann, and A. L. Bilich, 2010: GPS multipath and its relation to near-surface soil moisture content. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens., 3, 9199, doi:10.1109/JSTARS.2009.2033612.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Larson, K. M., J. S. Löfgren, and R. Haas, 2013a: Coastal sea level measurements using a single geodetic GPS receiver. Adv. Space Res., 51, 13011310, doi:10.1016/j.asr.2012.04.017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Larson, K. M., R. D. Ray, F. G. Nievinski, and J. T. Freymueller, 2013b: The accidental tide gauge: A GPS reflection case study from Kachemak Bay, Alaska. IEEE Geosci. Remote Sens. Lett., 10, 12001204, doi:10.1109/LGRS.2012.2236075.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Löfgren, J. S., and R. Haas, 2014: Sea level measurements using multi-frequency GPS and GLONASS observations. EURASIP J. Adv. Signal Process., 2014, 50, doi:10.1186/1687-6180-2014-50.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Löfgren, J. S., R. Haas, H.-G. Scherneck, and M. S. Bos, 2011: Three months of local sea level derived from reflected GNSS signals. Radio Sci., 46, RS0C05, doi:10.1029/2011RS004693.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Löfgren, J. S., R. Haas, and H.-G. Scherneck, 2014: Sea level time series and ocean tide analysis from multipath signals at five GPS sites in different parts of the world. J. Geodyn., 80, 6680, doi:10.1016/j.jog.2014.02.012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Martín Míguez, B., L. Testut, and G. Wöppelmann, 2008: The Van de Casteele test revisited: An efficient approach to tide gauge error characterization. J. Atmos. Oceanic Technol., 25, 12381244, doi:10.1175/2007JTECHO554.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Martín Míguez, B., L. Testut, and G. Wöppelmann, 2012: Performance of modern tide gauges: Towards mm-level accuracy. Sci. Mar., 76, 221228, doi:10.3989/scimar.03618.18A.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Munekane, H., 2013: Sub-daily noise in horizontal GPS kinematic time series due to thermal tilt of GPS monuments. J. Geod., 87, 393401, doi:10.1007/s00190-013-0613-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Park, J., R. Heitsenrether, and W. Sweet, 2014: Water level and wave height estimates at NOAA tide stations from acoustic and microwave sensors. J. Atmos. Oceanic Technol., 31, 22942308, doi:10.1175/JTECH-D-14-00021.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pérez, B., A. Payo, D. López, P. L. Woodworth, and E. Alvarez Fanjul, 2014: Overlapping sea level time series measured using different technologies: An example from the REDMAR Spanish network. Nat. Hazards Earth Syst. Sci., 14, 589610, doi:10.5194/nhess-14-589-2014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Portep, D. L., and H. H. Shih, 1996: Investigations of temperature effects on NOAA’s next generation water level measurement systems. J. Atmos. Oceanic Technol., 13, 714725, doi:10.1175/1520-0426(1996)013<0714:IOTEON>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pugh, D. T., 1987: Tides, Surges and Mean Sea-Level: A Handbook for Engineers and Scientists. Wiley & Sons, 486 pp.

  • Ray, R. D., and G. D. Egbert, 2004: The global S1 tide. J. Phys. Oceanogr., 34, 19221935, doi:10.1175/1520-0485(2004)034<1922:TGST>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Roussel, N., F. Frappart, G. Ramillien, J. Darrozes, C. Desjardins, P. Gegout, F. Pérosanz, and R. Biancale, 2014: Simulations of direct and reflected wave trajectories for ground-based GNSS-R experiments. Geosci. Model Dev., 7, 22612279, doi:10.5194/gmd-7-2261-2014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Santamaría-Gómez, A., and C. Watson, 2017: Remote leveling of tide gauges using GNSS reflectometry: Case study at Spring Bay, Australia. GPS Solutions, doi:10.1007/s10291-016-0537-x, in press.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Santamaría-Gómez, A., C. Watson, M. Gravelle, M. King, and G. Wöppelmann, 2015: Levelling co-located GNSS and tide gauge stations using GNSS reflectometry. J. Geod., 89, 241258, doi:10.1007/s00190-014-0784-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schöne, T., N. Schön, and D. Thaller, 2009: IGS Tide Gauge Benchmark Monitoring Pilot Project (TIGA): Scientific benefits. J. Geod., 83, 249261, doi:10.1007/s00190-008-0269-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Strandberg, J., T. Hobiger, and R. Haas, 2016: Improving GNSS-R sea level determination through inverse modeling of SNR data. Radio Sci., 51, 12861296, doi:10.1002/2016RS006057.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Woodworth, P. L., and D. E. Smith, 2003: A one year comparison of radar and bubbler tide gauges at Liverpool. Int. Hydrogr. Rev., 4, 4249.

    • Search Google Scholar
    • Export Citation
  • Woodworth, P. L., and D. L. Blackman, 2004: Evidence for systematic changes in extreme high waters since the mid-1970s. J. Climate, 17, 11901197, doi:10.1175/1520-0442(2004)017<1190:EFSCIE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Woodworth, P. L., D. L. Blackman, D. T. Pugh, and J. M. Vassie, 2005: On the role of diurnal tides in contributing to asymmetries in tidal probability distribution functions in areas of predominantly semidiurnal tide. Estuarine Coastal Shelf Sci., 64, 235240, doi:10.1016/j.ecss.2005.02.014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wöppelmann, G., and M. Marcos, 2016: Vertical land motion as a key to understanding sea level change and variability. Rev. Geophys., 54, 6492, doi:10.1002/2015RG000502.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 866 546 1
PDF Downloads 765 471 0

A 10-Year Comparison of Water Levels Measured with a Geodetic GPS Receiver versus a Conventional Tide Gauge

View More View Less
  • 1 Department of Aerospace Engineering Sciences, University of Colorado Boulder, Boulder, Colorado
  • | 2 NASA Goddard Space Flight Center, Greenbelt, Maryland
  • | 3 National Oceanography Centre, Liverpool, United Kingdom
Restricted access

Abstract

A standard geodetic GPS receiver and a conventional Aquatrak tide gauge, collocated at Friday Harbor, Washington, are used to assess the quality of 10 years of water levels estimated from GPS sea surface reflections. The GPS results are improved by accounting for (tidal) motion of the reflecting sea surface and for signal propagation delay by the troposphere. The RMS error of individual GPS water level estimates is about 12 cm. Lower water levels are measured slightly more accurately than higher water levels. Forming daily mean sea levels reduces the RMS difference with the tide gauge data to approximately 2 cm. For monthly means, the RMS difference is 1.3 cm. The GPS elevations, of course, can be automatically placed into a well-defined terrestrial reference frame. Ocean tide coefficients, determined from both the GPS and tide gauge data, are in good agreement, with absolute differences below 1 cm for all constituents save K1 and S1. The latter constituent is especially anomalous, probably owing to daily temperature-induced errors in the Aquatrak tide gauge.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author e-mail: Kristine M. Larson, kristinem.larson@gmail.com

Abstract

A standard geodetic GPS receiver and a conventional Aquatrak tide gauge, collocated at Friday Harbor, Washington, are used to assess the quality of 10 years of water levels estimated from GPS sea surface reflections. The GPS results are improved by accounting for (tidal) motion of the reflecting sea surface and for signal propagation delay by the troposphere. The RMS error of individual GPS water level estimates is about 12 cm. Lower water levels are measured slightly more accurately than higher water levels. Forming daily mean sea levels reduces the RMS difference with the tide gauge data to approximately 2 cm. For monthly means, the RMS difference is 1.3 cm. The GPS elevations, of course, can be automatically placed into a well-defined terrestrial reference frame. Ocean tide coefficients, determined from both the GPS and tide gauge data, are in good agreement, with absolute differences below 1 cm for all constituents save K1 and S1. The latter constituent is especially anomalous, probably owing to daily temperature-induced errors in the Aquatrak tide gauge.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author e-mail: Kristine M. Larson, kristinem.larson@gmail.com
Save