• Abshire, J. B., and Coauthors, 2010: Pulsed airborne lidar measurements of atmospheric CO2 column absorption. Tellus, 62B, 770783, doi:10.1111/j.1600-0889.2010.00502.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Abshire, J. B., H. Riris, C. Weaver, J. Mao, G. Allan, W. Hasselbrack, and E. Browell, 2013: Airborne measurements of CO2 column absorption and ranging using a pulsed direct-detection integrated path differential absorption lidar. Appl. Opt., 52, 44464460, doi:10.1364/AO.52.004446.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ambrico, P. E., A. Amodeo, P. Gilaramo, and N. Spinelli, 2000: Sensitivity analysis of differential absorption lidar measurements in the mid-infrared region. Appl. Opt., 39, 68476865, doi:10.1364/AO.39.006847.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Anderson, G. P., S. A. Clough, F. X. Kneizys, J. Chetwynd, and E. Shettle, 1986: AFGL atmospheric constituent profiles (0-120km). Air Force Geophysics Laboratory Tech. Rep. AFGL-TR-86-0110, Environmental Research Paper 954, 43 pp.

  • Barnes, N. P., E. D. Filer, C. A. Morrison, and C. J. Lee, 1996: Ho:Tm lasers. I. Theoretical. IEEE J. Quantum Electron., 32, 92103, doi:10.1109/3.481924.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bruneau, D., F. Gibert, P. Flamant, and J. Pelon, 2006: Complementary study of differential absorption lidar optimization in direct and heterodyne detection. Appl. Opt., 45, 48984906, doi:10.1364/AO.45.004898.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Caron, J., and Y. Durand, 2009: Operating wavelengths optimization for a spaceborne lidar measuring atmospheric CO2. Appl. Opt., 48, 54135422, doi:10.1364/AO.48.005413.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Casa, G., R. Wehr, A. Castrillo, E. Fasci, and L. Gianfrani, 2009: The line shape problem in the near-infrared spectrum of self-colliding CO2 molecules: Experimental investigation and test of semiclassical models. J. Chem. Phys., 130, 184306, doi:10.1063/1.3125965.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Conway, T., P. Tans, L. Waterman, and K. Thoning, 1994: Evidence for interannual variability of the carbon cycle from the National Oceanic and Atmospheric Administration/Climate Monitoring and Diagnostics Laboratory Global Air Sampling Network. J. Geophys. Res., 99, 22 83122 855, doi:10.1029/94JD01951.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dobbs, M. E., J. Dobler, M. Bruan, D. McGregor, J. Overbeck, B. Moore III, E. Browell, and T. Zaccheo, 2008: A modulated CW fiber laser-lidar suite for ASCENDS mission. 24th International Laser Radar Conference (ILRC 24), Vol. 1, ICLAS, 15–18.

  • Dobler, J. T., F. Harrison, E. Browell, B. Lin, D. McGregor, S. Kooi, Y. Choi, and S. Ismail, 2013: Atmospheric CO2 column measurements with an airborne intensity-modulated continuous wave 1.57 µm fiber laser lidar. Appl. Opt., 52, 28742892, doi:10.1364/AO.52.002874.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dufour, E., and F. M. Breon, 2003: Spaceborne estimate of atmospheric CO2 column by use of the differential absorption method: Error analysis. Appl. Opt., 42, 35953609, doi:10.1364/AO.42.003595.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ehret, G., C. Kiemle, M. Wirth, A. Amediek, A. Fix, and S. Houweling, 2008: Space-borne remote sensing of CO2, CH4, and N2O by integrated path differential absorption lidar: A sensitivity analysis. Appl. Phys., 90B, 593608, doi:10.1007/s00340-007-2892-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • ESA, 2008: A-SCOPE—Advanced Space Carbon and Climate Observation of Planet Earth. Report for Assessment, ESA SP-1313/1, 109 pp. [Available online at http://esamultimedia.esa.int/docs/SP1313-1_ASCOPE.pdf.]

  • Gardner, C. S., 1982: Target signatures for laser altimeters: An analysis. Appl. Opt., 21, 448453, doi:10.1364/AO.21.000448.

  • Henderson, S. W., E. H. Yun, and E. S. Fry, 1986: Fast resonance-detection technique for single-frequency operation of injection-seeded Nd:YAG lasers. Opt. Lett., 11, 715717, doi:10.1364/OL.11.000715.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Joly, L., F. Gibert, B. Grouiez, A. Grossel, B. Parvitte, G. Durry, and V. Zéninari, 2008: A complete study of CO2 line parameters around 4845 cm−1 for Lidar applications. J. Quant. Spectrosc. Radiat. Transfer, 109, 426434, doi:10.1016/j.jqsrt.2007.06.003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Joly, L., and Coauthors, 2009: Laser diode absorption spectroscopy for accurate CO2 line parameters at 2 µm: Consequences for space-based DIAL measurements and potential biases. Appl. Opt., 48, 54755483, doi:10.1364/AO.48.005475.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kavaya, M. J., J. Y. Beyon, G. J. Koch, M. Petros, P. J. Petzar, U. N. Singh, B. Trieu, and J. Yu, 2014: The Doppler Aerosol Wind Lidar (DAWN) airborne, wind-profiling, coherent-detection lidar system: Overview, flight results, and plans. J. Atmos. Oceanic Technol., 31, 826842, doi:10.1175/JTECH-D-12-00274.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Koch, G. J., and Coauthors, 2008: Side-line tunable laser transmitter for differential absorption lidar measurement of CO2: Design and application to atmospheric measurement. Appl. Opt., 47, 944956, doi:10.1364/AO.47.000944.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • MacKerrow, E. P., and M. J. Schmitt, 1997: Measuring of integrated speckle statistics for CO2 lidar returns from a moving, nonuniform, hard target. Appl. Opt., 36, 69216937, doi:10.1364/AO.36.006921.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Measures, R., 1992: Laser systems as remote sensors. Laser Remote Sensing: Fundamental and Applications, Krieger Publishing Company, 205213.

  • Megie, G., and R. T. Menzies, 1980: Complementarity of UV and IR differential absorption lidar for global measurements of atmospheric species. Appl. Opt., 19, 11731183, doi:10.1364/AO.19.001173.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Menzies, R. T., and M. T. Chahine, 1974: Remote sensing with an airborne laser absorption spectrometer. Appl. Opt., 13, 28402849, doi:10.1364/AO.13.002840.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Menzies, R. T., and D. M. Tratt, 2003: Differential laser absorption spectrometry for global profiling of tropospheric carbon dioxide: Selection of optimum sounding frequencies for high-precision measurements. Appl. Opt., 42, 65696577, doi:10.1364/AO.42.006569.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Menzies, R. T., G. Spiers, and J. Jacob, 2014: Airborne laser absorption spectrometer measurements of atmospheric CO2 column mole fractions: Source and sink detection and environmental impacts on retrievals. J. Atmos. Oceanic Technol., 31, 404442, doi:10.1175/JTECH-D-13-00128.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Miller, C. E., and Coauthors, 2007: Precision requirements for space-based data. J. Geophys. Res., 112, D10314, doi:10.1029/2006JD007659.

    • Search Google Scholar
    • Export Citation
  • NRC, 2007: Earth Science and Applications from Space: National Imperatives for the Next Decade and Beyond. National Academies Press, 456 pp.

  • Refaat, T. F., U. N. Singh, M. Petros, R. Remus, and J. Yu, 2015: Self-calibration and laser energy monitor validation for a double-pulsed 2-µm CO2 integrated path differential absorption lidar application. Appl. Opt., 54, 72407251, doi:10.1364/AO.54.007240.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Refaat, T. F., U. N. Singh, J. Yu, M. Petros, R. Remus, and S. Ismail, 2016: Double-pulse 2-µm integrated path differential absorption lidar airborne validation for atmospheric carbon dioxide measurement. Appl. Opt., 55, 42324246, doi:10.1364/AO.55.004232.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Regalia-Jarlot, L., V. Zeninari, B. Parvitte, A. Grossel, X. Thomas, P. von der Heyden, and G. Durry, 2006: A complete study of the line intensities of four bands of CO2 around 1.6 and 2.0 µm: A comparison between Fourier transform and diode laser measurements. J. Quant. Spectrosc. Radiat. Transfer, 101, 325338, doi:10.1016/j.jqsrt.2005.11.021.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Remsberg, E. E., and L. L. Gordley, 1978: Analysis of differential absorption lidar from the Space Shuttle. Appl. Opt., 17, 624630, doi:10.1364/AO.17.000624.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rothman, L., and Coauthors, 2013: The HITRAN2012 molecular spectroscopic database. J. Quant. Spectrosc. Radiat. Transf., 130, 450, doi:10.1016/j.jqsrt.2013.07.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Singh, U. N., B. Walsh, J. Yu, M. Petros, M. Kavaya, T. Refaat, and N. Barnes, 2015: Twenty years of Tm:Ho:YLF and LuLiF laser development for global wind and carbon dioxide active remote sensing. Opt. Mater. Express, 5, 827837, doi:10.1364/OME.5.000827.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Spiers, G. D., R. Menzies, J. Jacob, L. Christensen, M. Phillips, Y. Choi, and E. Browell, 2011: Atmospheric CO2 measurements with a 2 μm airborne laser absorption spectrometer employing coherent detection. Appl. Opt., 50, 20982111, doi:10.1364/AO.50.002098.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Toth, R. A., L. Brown, C. Miller, V. Devi, and D. Benner, 2008: Spectroscopic database of CO2 line parameters: 4300–7000 cm−1. J. Quant. Spectrosc. Radiat. Transfer, 109, 906921, doi:10.1016/j.jqsrt.2007.12.004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yu, J., U. N. Singh, N. P. Barnes, and M. Petros, 1998: 125-mJ diode-pumped injection-seeded Ho:Tm:YLF laser. Opt. Lett., 23, 780782, doi:10.1364/OL.23.000780.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yu, J., A. Braud, and M. Petros, 2003: 600-mJ, double-pause 2-μm laser. Opt. Lett., 28, 540542, doi:10.1364/OL.28.000540.

  • Yu, J., B. C. Trieu, E. Modlin, U. N. Singh, and M. J. Kavaya, 2006: 1 J/pulse Q-switched 2 μm solid-state laser. Opt. Lett., 31, 462464, doi:10.1364/OL.31.000462.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yu, J., and Coauthors, 2010: A two micron coherent differential absorption lidar development. Lidar Remote Sensing for Environmental Monitoring XI, U. N. Singh and K. Mizutani, Eds., International Society for Optical Engineering (SPIE Proceedings, Vol. 7860), 786006, doi:10.1117/12.873318.

    • Crossref
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 44 44 44
PDF Downloads 3 3 3

An Airborne 2-μm Double-Pulsed Direct-Detection Lidar Instrument for Atmospheric CO2 Column Measurements

View More View Less
  • 1 NASA Langley Research Center, Hampton, Virginia
  • | 2 Science System and Applications, Inc., Hampton, Virginia
  • | 3 Michigan Aerospace Corporation, Ann Arbor, Michigan
Restricted access

Abstract

This study reports airborne measurements of atmospheric CO2 column density using a 2-μm double-pulsed integrated path differential absorption (IPDA) lidar. This new 2-μm IPDA lidar offers an alternative approach to measure CO2 column density with unique features. The online frequencies of this lidar can be tuned to 1–6 GHz from the CO2 R30 absorption line peak. It provides high measurement sensitivity to the lower-tropospheric CO2 near the ground surface. This instrument was flown in the spring of 2014 in a NASA B200 aircraft. The results of these test flights clearly demonstrate the measurement capabilities of this lidar instrument. The CO2 column dry mixing ratio is compared to an in situ CO2 measurement by a collocated NOAA flight. The IPDA lidar measurement is determined to be in good agreement with a 0.36% difference, which corresponds to 1.48 ppm. It is the average difference between the IPDA lidar measurements and the NOAA air samples in the flight altitudes from 3 to 6.1 km.

For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author e-mail: Jirong Yu, j.yu@nasa.gov

Abstract

This study reports airborne measurements of atmospheric CO2 column density using a 2-μm double-pulsed integrated path differential absorption (IPDA) lidar. This new 2-μm IPDA lidar offers an alternative approach to measure CO2 column density with unique features. The online frequencies of this lidar can be tuned to 1–6 GHz from the CO2 R30 absorption line peak. It provides high measurement sensitivity to the lower-tropospheric CO2 near the ground surface. This instrument was flown in the spring of 2014 in a NASA B200 aircraft. The results of these test flights clearly demonstrate the measurement capabilities of this lidar instrument. The CO2 column dry mixing ratio is compared to an in situ CO2 measurement by a collocated NOAA flight. The IPDA lidar measurement is determined to be in good agreement with a 0.36% difference, which corresponds to 1.48 ppm. It is the average difference between the IPDA lidar measurements and the NOAA air samples in the flight altitudes from 3 to 6.1 km.

For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author e-mail: Jirong Yu, j.yu@nasa.gov
Save