• Alcoverro, B., 2008: The design and performance of infrasound noise-reducing pipe arrays. Handbook of Signal Processing in Acoustics, D. Havelock, S. Kuwano, and M. Vorländer, Eds., Vol. 2, Springer, 1473–1486, doi:10.1007/978-0-387-30441-0_80.

  • Alcoverro, B., and A. Le Pichon, 2005: Design and optimization of a noise reduction system for infrasonic measurements using elements with low acoustic impedance. J. Acoust. Soc. Amer., 117, 17171727, doi:10.1121/1.1804966.

    • Search Google Scholar
    • Export Citation
  • Blackstock, D. T., 2000: Fundamentals of Physical Acoustics. John Wiley & Sons, 568 pp.

  • Brown, D., C. Szuberla, D. McComarck, and P. Mialle, 2014: The influence of spatial filters on infrasound array responses. Pure Appl. Geophys., 171, 575585, doi:10.1007/s00024-012-0586-1.

    • Search Google Scholar
    • Export Citation
  • Burridge, R., 1971: The acoustics of pipe arrays. Geophys. J. Int., 26, 5369, doi:10.1111/j.1365-246X.1971.tb03382.x.

  • Charbit, M., B. Doury, and J. Marty, 2015: Evaluation of infrasound in-situ calibration method on a 3-month measurement campaign. Infrasound Technology Workshop 2015 (ITW2015), Vienna, Austria, CTBTO.

  • Christie, D., and P. Campus, 2010: The IMS infrasound network: Design and establishment of infrasound stations. Infrasound Monitoring for Atmospheric Studies, A. Le Pichon, E. Blanc, and A. Hauchecorne, Eds., Springer, 29–75.

  • Daniels, F., 1959: Noise-reducing line microphone for frequencies below 1 cps. J. Acoust. Soc. Amer., 31, 529531, doi:10.1121/1.1907747.

    • Search Google Scholar
    • Export Citation
  • Denis, S., and C. Le Floch, 2015: Wind noise reduction systems: Complementary results. Infrasound Technology Workshop 2015 (ITW2015), Vienna, Austria, CTBTO.

  • Gabrielson, T., 2011: In situ calibration of atmospheric-infrasound sensors including the effects of wind-noise-reduction pipe systems. J. Acoust. Soc. Amer., 130, 11541163, doi:10.1121/1.3613925.

    • Search Google Scholar
    • Export Citation
  • Gabrielson, T., 2013: In-situ calibration of infrasound elements: Summary report (2009-2013). Nuclear Arms Control Treaty Tech. Rep., 84 pp.

  • Garcés, M., J. Aucan, D. Fee, P. Caron, M. Merrifield, R. Gibson, J. Bhattacharyya, and S. Shah, 2006: Infrasound from large surf. Geophys. Res. Lett., 33, L05611, doi:10.1029/2005GL025085.

    • Search Google Scholar
    • Export Citation
  • Grover, F., 1971: Experimental noise reducers for an active microbarograph array. Geophys. J. Int., 26, 4152, doi:10.1111/j.1365-246X.1971.tb03381.x.

    • Search Google Scholar
    • Export Citation
  • Hart, D., R. Rembold, M. Hedlin, C. Coon, D. Szuberla, C. Fee, J. Helmericks, and J. Marty, 2013: IS56 Newport, WA component upgrade: Evaluation of the replaced digitizers (Geotech Dr24) and infrasound sensors (Martec MB2000) and implications for planning future maintenance and upgrades. Science and Technology Conf. (SNT2013), Vienna, Austria, CTBTO.

  • Hedlin, M., and R. Raspet, 2003: Infrasonic wind-noise reduction by barriers and spatial filters. J. Acoust. Soc. Amer., 114, 13791386, doi:10.1121/1.1598198.

    • Search Google Scholar
    • Export Citation
  • Hedlin, M., and B. Alcoverro, 2005: The use of impedance matching capillaries for reducing resonance in rosette infrasonic spatial filters. J. Acoust. Soc. Amer., 117, 18801888, doi:10.1121/1.1760778.

    • Search Google Scholar
    • Export Citation
  • Hedlin, M., B. Alcoverro, and G. D’Spain, 2003: Evaluation of rosette infrasonic noise-reducing spatial filters. J. Acoust. Soc. Amer., 114, 18071820, doi:10.1121/1.1603763.

    • Search Google Scholar
    • Export Citation
  • Keefe, D. H., 1984: Acoustical wave propagation in cylindrical ducts: Transmission line parameter approximations for isothermal and nonisothermal boundary conditions. J. Acoust. Soc. Amer., 75, 5862, doi:10.1121/1.390300.

    • Search Google Scholar
    • Export Citation
  • Kramer, A., B. Doury, J. Marty, and T. Grasse, 2015: Progress in the integration of on-site calibration capability at IMS stations: Towards measurement quality assurance. Infrasound Technology Workshop 2015 (ITW2015), Vienna, Austria, CTBTO.

  • Le Pichon, A., V. Maurer, D. Raymond, and O. Hyvernaud, 2004: Infrasound from ocean waves observed in Tahiti. Geophys. Res. Lett., 31, L19103, doi:10.1029/2004GL020676.

    • Search Google Scholar
    • Export Citation
  • Le Pichon, A., L. Ceranna, M. Garcés, D. Drob, and C. Millet, 2006: On using infrasound from interacting ocean swells for global continuous measurements of winds and temperature in the stratosphere. J. Geophys. Res., 111, D11106, doi:10.1029/2005JD006690.

    • Search Google Scholar
    • Export Citation
  • Le Pichon, A., E. Blanc, and A. Hauchecorne, Eds., 2010: Infrasound Monitoring for Atmospheric Studies.Springer, 735 pp., doi:10.1007/978-1-4020-9508-5.

  • Mack, H., and E. Flinn, 1971: Analysis of the spatial coherence of short-period acoustic-gravity waves in the atmosphere. Geophys. J. Int., 26, 255269, doi:10.1111/j.1365-246X.1971.tb03399.x.

    • Search Google Scholar
    • Export Citation
  • Marty, J., D. Ponceau, and F. Dalaudier, 2010: Using the International Monitoring System infrasound network to study gravity waves. Geophys. Res. Lett., 37, L19802, doi:10.1029/2010GL044181.

    • Search Google Scholar
    • Export Citation
  • Marty, J., S. Denis, and M. Garcés, 2011a: Performance assessment of the IS07 infrasound station. Infrasound Technology Workshop 2011, Dead Sea, Jordan, CTBTO.

  • Marty, J., A. Le Pichon, and L. Evers, 2011b: IMS wind noise reduction systems. Infrasound Expert Group Meeting 2011, Dead Sea, Jordan, 6 pp.

  • Marty, J., A. Kramer, and P. Polzer, 2012: IMS acoustic filtering systems. Infrasound Technology Workshop 2012 (ITW2012), Daejon, South Korea, CTBTO.

  • Marty, J., A. Kramer, and P. Mialle, 2013: IS07 major upgrade. Infrasound Technology Workshop 2013 (ITW2013), Vienna, Austria, CTBTO.

  • McDonald, J., and E. Herrin, 1975: Properties of pressure fluctuations in an atmospheric boundary layer. Bound.-Layer Meteor., 8, 419436, doi:10.1007/BF02153561.

    • Search Google Scholar
    • Export Citation
  • McDonald, J., E. J. Douze, and E. Herrin, 1971: The structure of atmospheric turbulence and its application to the design of pipe arrays. Geophys. J. Int., 26, 99109, doi:10.1111/j.1365-246X.1971.tb03385.x.

    • Search Google Scholar
    • Export Citation
  • Neill, P., 1993: Acoustical characteristics of a very low frequency sound source. M. S. thesis, Dept. of Physics, University of Mississippi, 100 pp.

  • Park, J., M. Garcés, and B. Thigpen, 2009: The rotary subwoofer: A controllable infrasound source. J. Acoust. Soc. Amer., 125, 20062012, doi:10.1121/1.3082115.

    • Search Google Scholar
    • Export Citation
  • Ponceau, D., and L. Bosca, 2010: Low-noise broadband microbarometers. Infrasound Monitoring for Atmospheric Studies, A. Le Pichon, E. Blanc, and A. Hauchecorne, Eds., Springer, 119–140, doi:10.1007/978-1-4020-9508-5_4.

  • Raspet, R., and J. Webster, 2015: Wind noise under a pine tree canopy. J. Acoust. Soc. Amer., 137, 651659, doi:10.1121/1.4906587.

  • Shams, Q. A., A. J. Zuckerwar, and B. S. Sealey, 2005: Compact nonporous windscreen for infrasonic measurements. J. Acoust. Soc. Amer., 118, 13351340, doi:10.1121/1.1992707.

    • Search Google Scholar
    • Export Citation
  • Trelleborg, 2016: Hydro’k manufacturing and machine tools. [Available online at http://www.trelleborg.com/en/apiv2/Download/ProductSheetPDF/8BD5976F-9081-4309-AE97-A90DA6A501C6.]

  • Walker, K., and M. Hedlin, 2010: A review of wind-noise reduction methodologies. Infrasound Monitoring for Atmospheric Studies, A. Le Pichon, E. Blanc, and A. Hauchecorne, Eds., Springer, 141–182, doi:10.1007/978-1-4020-9508-5_5.

  • Welch, P. D., 1967: The use of fast Fourier transform for the estimation of power spectra: A method based on time-averaging over short, modified periodograms. IEEE Trans. Audio Electroacoust., 15, 7073, doi:10.1109/TAU.1967.1161901.

    • Search Google Scholar
    • Export Citation
  • Willis, M., M. Garcés, C. Hetzer, and S. Businger, 2004: Infrasonic observations of open ocean swells in the Pacific: Deciphering the song of the sea. Geophys. Res. Lett., 31, L19303, doi:10.1029/2004GL020684.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 279 172 0
PDF Downloads 210 122 0

Comparison and Validation of Acoustic Response Models for Wind Noise Reduction Pipe Arrays

View More View Less
  • 1 CTBTO, Vienna, Austria
  • | 2 CEA, DAM, DIF, Arpajon, France
  • | 3 Applied Research Laboratory, The Pennsylvania State University, University Park, Pennsylvania
  • | 4 Infrasound Laboratory, University of Hawai‘i at Mānoa, Kailua-Kona, Hawaii
  • | 5 CTBTO, Vienna, Austria
Restricted access

Abstract

The detection capability of the infrasound component of the International Monitoring System (IMS) is tightly linked to the performance of its wind noise reduction systems. The wind noise reduction solution implemented at all IMS infrasound measurement systems consists of a spatial distribution of air inlets connected to the infrasound sensor through a network of pipes. This system, usually referred to as “pipe array,” has proven its efficiency in operational conditions. The objective of this paper is to present the results of the comparison and validation of three distinct acoustic response models for pipe arrays. The characteristics of the models and the results obtained for a defined set of pipe array configurations are described. A field experiment using a newly developed infrasound generator, dedicated to the validation of these models, is then presented. The comparison between the modeled and empirical acoustic responses shows that two of the three models can be confidently used to estimate pipe array acoustic responses. This study paves the way to the deconvolution of IMS infrasound data from pipe array responses and to the optimization of pipe array design to IMS applications.

Corresponding author e-mail: Julien Marty, julien.marty@ctbto.org

Abstract

The detection capability of the infrasound component of the International Monitoring System (IMS) is tightly linked to the performance of its wind noise reduction systems. The wind noise reduction solution implemented at all IMS infrasound measurement systems consists of a spatial distribution of air inlets connected to the infrasound sensor through a network of pipes. This system, usually referred to as “pipe array,” has proven its efficiency in operational conditions. The objective of this paper is to present the results of the comparison and validation of three distinct acoustic response models for pipe arrays. The characteristics of the models and the results obtained for a defined set of pipe array configurations are described. A field experiment using a newly developed infrasound generator, dedicated to the validation of these models, is then presented. The comparison between the modeled and empirical acoustic responses shows that two of the three models can be confidently used to estimate pipe array acoustic responses. This study paves the way to the deconvolution of IMS infrasound data from pipe array responses and to the optimization of pipe array design to IMS applications.

Corresponding author e-mail: Julien Marty, julien.marty@ctbto.org
Save