• Cartwright, D. E., and A. C. Edden, 1973: Corrected tables of tidal harmonics. Geophys. J. Roy. Astron. Soc., 33, 253264, doi:10.1111/j.1365-246X.1973.tb03420.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cartwright, D. E., and R. D. Ray, 1990: Oceanic tides from Geosat altimetry. J. Geophys. Res., 95, 30693090, doi:10.1029/JC095iC03p03069.

  • Cartwright, D. E., W. Munk, and B. D. Zetler, 1969: Pelagic tidal measurements: A suggested procedure for analysis. Eos, Trans. Amer. Geophys. Union, 50, 472477, doi:10.1029/EO050i007p00472.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chao, B. F., and Y. Hsieh, 2015: The Earth’s free core nutation: Formulation of dynamics and estimation of eigenperiod from the very-long-baseline interferometry data. Earth Planet. Sci. Lett., 432, 483492, doi:10.1016/j.epsl.2015.10.010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dehant, V., and P. M. Mathews, 2015: Precession, Nutation, and Wobble of the Earth. Cambridge University Press, 536 pp.

    • Crossref
    • Export Citation
  • Desai, S. D., and J. Wahr, 1995: Empirical ocean tide models estimated from TOPEX/POSEIDON altimetry. J. Geophys. Res., 100, 25 20525 228, doi:10.1029/95JC02258.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Desai, S. D., and D.-N. Yuan, 2006: Application of the convolution formalism to the ocean tide potential: Results from GRACE. J. Geophys. Res., 111, C06023, doi:10.1029/2005JC003361.

    • Search Google Scholar
    • Export Citation
  • Doodson, A. T., and H. D. Warburg, 1941: Admiralty Manual of Tides. HMSO, 270 pp.

  • Foreman, M. G. G., J. Y. Cherniawsky, and V. A. Ballantyne, 2009: Versatile harmonic tidal analysis: Improvements and applications. J. Atmos. Oceanic Technol., 26, 806817, doi:10.1175/2008JTECHO615.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Godin, G., 1972: The Analysis of Tides. University of Toronto Press, 264 pp.

  • Gwinn, C. R., T. A. Herring, and I. I. Shapiro, 1986: Geodesy by radio interferometry: Studies of the forced nutations of the Earth: 2. Interpretation. J. Geophys. Res., 91, 47554765, doi:10.1029/JB091iB05p04755.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hartmann, T., and H.-G. Wenzel, 1995: The HW95 tidal potential catalogue. Geophys. Res. Lett., 22, 35533556, doi:10.1029/95GL03324.

  • Hendershott, M. C., 1981: Long waves and ocean tides. Evolution of Physical Oceanography: Scientific Surveys in Honor of Henry Stommel, B. A. Warren and C. Wunsch, Eds., MIT Press, 292–341.

  • Herring, T. A., C. R. Gwinn, and I. I. Shapiro, 1986: Geodesy by radio interferometry: Studies of the forced nutations of the Earth: 1. Data analysis. J. Geophys. Res., 91, 47454754, doi:10.1029/JB091iB05p04745.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Koot, L., A. Rivoldini, O. de Viron, and V. Dehant, 2008: Estimation of Earth interior parameters from a Bayesian inversion of very long baseline interferometry nutation time series. J. Geophys. Res., 113, B08414, doi:10.1029/2007JB005409.

    • Search Google Scholar
    • Export Citation
  • Le Provost, C., F. Lyard, and J.-M. Molines, 1991: Improving ocean tide predictions by using additional semidiurnal constituents from spline interpolation in the frequency domain. Geophys. Res. Lett., 18, 845848, doi:10.1029/91GL01065.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lyard, F., F. Lefevre, T. Letellier, and O. Francis, 2006: Modelling the global ocean tides: Modern insights from FES2004. Ocean Dyn., 56, 394415, doi:10.1007/s10236-006-0086-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mathews, P. M., B. A. Buffett, and I. I. Shapiro, 1995: Love numbers for diurnal tides: Relation to wobble admittances and resonance expansions. J. Geophys. Res., 100, 99359948, doi:10.1029/95JB00670.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mathews, P. M., T. A. Herring, and B. A. Buffett, 2002: Modeling of nutation and precession: New nutation series for nonrigid Earth and insights into the Earth’s interior. J. Geophys. Res., 107, 2068, doi:10.1029/2001JB000390.

    • Search Google Scholar
    • Export Citation
  • Merriam, J. B., 1994: The nearly diurnal free wobble resonance in gravity measured at Cantley, Quebec. Geophys. J. Int., 119, 369380, doi:10.1111/j.1365-246X.1994.tb00129.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ooe, M., and Y. Tamura, 1985: Fine structure of tidal admittances and the fluid core resonance effect in the ocean tide around Japan. Manuscr. Geod., 10, 3749.

    • Search Google Scholar
    • Export Citation
  • Parker, B. B., 2007: Tidal analysis and prediction. NOAA Special Publ. NOS CO-OPS 3, National Oceanic and Atmospheric Administration, 378 pp.

  • Pugh, D., and P. Woodworth, 2014: Sea-Level Science: Understanding Tides, Surges, Tsunamis and Mean Sea-Level Changes. Cambridge University Press, 395 pp.

    • Crossref
    • Export Citation
  • Ray, R. D., 1999: A global ocean tide model from TOPEX/POSEIDON altimetry: GOT99.2. NASA Tech. Memo. NASA/TM-1999-209478, 58 pp.

  • Ray, R. D., 2007: Propagation of the overtide M4 through the deep Atlantic Ocean. Geophys. Res. Lett., 34, L21602, doi:10.1029/2007GL031618.

  • Ray, R. D., 2013: Precise comparisons of bottom-pressure and altimetric ocean tides. J. Geophys. Res. Oceans, 118, 45704584, doi:10.1002/jgrc.20336.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ray, R. D., and G. D. Egbert, 2004: The global S1 tide. J. Phys. Oceanogr., 34, 19221935, doi:10.1175/1520-0485(2004)034<1922:TGST>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rosat, S., and S. B. Lambert, 2009: Free core nutation resonance parameters from VLBI and superconducting gravimeter data. Astron. Astrophys., 503, 287291, doi:10.1051/0004-6361/200811489.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rosat, S., N. Florsch, J. Hinderer, and M. Llubes, 2009: Estimation of the Free Core Nutation parameters from SG data: Sensitivity study and comparative analysis using linearized least-squares and Bayesian methods. J. Geodyn., 48, 331339, doi:10.1016/j.jog.2009.09.027.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schindelegger, M., and R. D. Ray, 2014: Surface pressure tide climatologies deduced from a quality-controlled network of barometric observations. Mon. Wea. Rev., 142, 48724889, doi:10.1175/MWR-D-14-00217.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schureman, P., 1940: Manual of harmonic analysis and prediction of tides. U.S. Coast and Geodetic Survey Special Publ. 98, 317 pp.

  • Stammer, D., and Coauthors, 2014: Accuracy assessment of global barotropic ocean tide models. Rev. Geophys., 52, 243282, doi:10.1002/2014RG000450.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Taguchi, E., D. Stammer, and W. Zahel, 2014: Inferring deep ocean tidal energy dissipation from the global high-resolution data-assimilative HAMTIDE model. J. Geophys. Res. Oceans, 119, 45734592, doi:10.1002/2013JC009766.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wahr, J. M., 1981: Body tides on an elliptical, rotating, elastic and oceanless earth. Geophys. J. Roy. Astron. Soc., 64, 677704, doi:10.1111/j.1365-246X.1981.tb02690.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wahr, J. M., and T. Sasao, 1981: A diurnal resonance in the ocean tide and in the Earth’s load response due to the resonant free ‘core nutation.’ Geophys. J. Roy. Astron. Soc., 64, 747765, doi:10.1111/j.1365-246X.1981.tb02693.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zürn, W., 1997: The nearly-diurnal free-wobble resonance. Tidal Phenomena, H. Wilhelm, W. Zürn, and H.-G. Wenzel, Eds., Lecture Notes in Earth Sciences, Vol. 66, Springer, 95–109.

    • Crossref
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 192 108 0
PDF Downloads 188 107 0

On Tidal Inference in the Diurnal Band

View More View Less
  • 1 NASA Goddard Space Flight Center, Greenbelt, Maryland
Restricted access

Abstract

Standard methods of tidal inference should be revised to account for a known resonance that occurs mostly within the K1 tidal group in the diurnal band. The resonance arises from a free rotational mode of Earth caused by the fluid core. In a set of 110 bottom-pressure tide stations, the amplitude of the P1 tidal constituent is shown to be suppressed relative to K1, which is in good agreement with the resonance theory. Standard formulas for the K1 nodal modulation remain essentially unaffected. Two examples are given of applications of the refined inference methodology: one with monthly tide gauge data and one with satellite altimetry. For some altimeter-constrained tide models, an inferred P1 constituent is found to be more accurate than a directly determined one.

For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author e-mail: R. D. Ray, richard.ray@nasa.gov

Abstract

Standard methods of tidal inference should be revised to account for a known resonance that occurs mostly within the K1 tidal group in the diurnal band. The resonance arises from a free rotational mode of Earth caused by the fluid core. In a set of 110 bottom-pressure tide stations, the amplitude of the P1 tidal constituent is shown to be suppressed relative to K1, which is in good agreement with the resonance theory. Standard formulas for the K1 nodal modulation remain essentially unaffected. Two examples are given of applications of the refined inference methodology: one with monthly tide gauge data and one with satellite altimetry. For some altimeter-constrained tide models, an inferred P1 constituent is found to be more accurate than a directly determined one.

For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author e-mail: R. D. Ray, richard.ray@nasa.gov
Save