• Andersson, E., and M. Masutani, 2010: Collaboration on observing system simulation experiments (Joint OSSE). ECMWF Newsletter, No. 123, ECMWF, Reading, United Kingdom, 14–16.

  • Atlas, R., 1997: Atmospheric observation and experiments to assess their usefulness in data assimilation. J. Meteor. Soc. Japan, 75, 111130.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Atlas, R., and Coauthors, 2001: The effects of marine winds from scatterometer data on weather analysis and forecasting. Bull. Amer. Meteor. Soc., 82, 19651990, doi:10.1175/1520-0477(2001)082<1965:TEOMWF>2.3.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Atlas, R., A. Y. Hou, and R. Oreste, 2005: Application of SeaWinds scatterometer and TMI-SSM/I rain rates to hurricane analysis and forecasting. ISPRS J. Photogramm. Remote Sens., 59, 233243, doi:10.1016/j.isprsjprs.2005.02.007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Atlas, R., V. Tallapragada, and S. Gopalakrishnan, 2015a: Advances in tropical cyclone intensity forecasts. Mar. Technol. Soc. J., 49, 149160, doi:10.4031/MTSJ.49.6.2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Atlas, R., L. Bucci, B. Annane, R. Hoffman, and S. Murillo, 2015b: Observing system simulation experiments to assess the potential impact of new observing systems on hurricane forecasting. Mar. Technol. Soc. J., 49, 140148, doi:10.4031/MTSJ.49.6.3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brennan, M. J., C. C. Hennon, and R. D. Knabb, 2009: The operational use of QuickSCAT ocean surface vector winds at the National Hurricane Center. Wea. Forecasting, 24, 621645, doi:10.1175/2008WAF2222188.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cangialosi, J. P., and J. L. Franklin, 2016: National Hurricane Center forecast verification report: 2015 hurricane season. NOAA/NWS Tech. Rep., 69 pp. [Available online at http://www.nhc.noaa.gov/verification/pdfs/Verification_2015.pdf.]

  • Chen, S.-H., 2007: The impact of assimilating SSM/I and QuikSCAT satellite winds on Hurricane Isidore simulation. Mon. Wea. Rev., 135, 549566, doi:10.1175/MWR3283.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Clarizia, M. P., C. S. Ruf, P. Jales, and C. Gommenginger, 2014: Spaceborne GNSS-R minimum variance wind speed estimator. IEEE Trans. Geosci. Remote Sens., 52, 68296843, doi:10.1109/TGRS.2014.2303831.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gall, R., J. Franklin, F. Marks, E. N. Rappaport, and F. Toepfer, 2013: The Hurricane Forecast Improvement Project. Bull. Amer. Meteor. Soc., 94, 329343, doi:10.1175/BAMS-D-12-00071.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gopalakrishnan, S. G., S. Goldenberg, T. Quirino, X. Zhang, F. Marks Jr., K.-S. Yeh, R. Atlas, and V. Tallapragada, 2012: Toward improving high-resolution numerical hurricane forecasting: Influence of model horizontal grid resolution, initialization, and physics. Wea. Forecasting, 27, 647666, doi:10.1175/WAF-D-11-00055.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hoffman, R. N., and R. Atlas, 2016: Future observing system simulation experiments. Bull. Amer. Meteor. Soc., 97, 16011616, doi:10.1175/BAMS-D-15-00200.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Katzberg, S. J., R. A. Walker, J. H. Roles, T. Lynch, and P. G. Black, 2001: First GPS signals reflected from the interior of a tropical storm: Preliminary results from Hurricane Michael. Geophys. Res. Lett., 28, 19811984, doi:10.1029/2000GL012823.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Katzberg, S. J., O. Torres, and G. Ganoe, 2006: Calibration of reflected GPS for tropical storm wind speed retrievals. Geophys. Res. Lett., 33, L18602, doi:10.1029/2006GL026825.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, Z., and Z. Pu, 2014: Numerical simulations of the genesis of Typhoon Nuri (2008): Sensitivity to initial conditions and implications for the roles of intense convection and moisture conditions. Wea. Forecasting, 29, 14021424, doi:10.1175/WAF-D-14-00003.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Masutani, M., and Coauthors, 2010: Observing system simulation experiments at the National Centers for Environmental Prediction. J. Geophys. Res., 115, D07101, doi:10.1029/2009JD012528.

    • Search Google Scholar
    • Export Citation
  • Nolan, D. S., R. Atlas, K. T. Bhatia, and L. R. Bucci, 2013: Development and validation of a hurricane nature run using the Joint OSSE nature run and the WRF model. J. Adv. Earth Model. Syst., 5, 382405, doi:10.1002/jame.20031.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Parrish, D. F., and J. C. Derber, 1992: The National Meteorological Center’s statistical-interpolation analysis system. Mon. Wea. Rev., 120, 17471763, doi:10.1175/1520-0493(1992)120<1747:TNMCSS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pu, Z., X. Li, C. Velden, S. Aberson, and W. T. Liu, 2008: Impact of aircraft dropsonde and satellite wind data on the numerical simulation of two landfalling tropical storms during TCSP. Wea. Forecasting, 23, 6279, doi:10.1175/2007WAF2007006.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pu, Z., L. Zhang, S. Zhang, B. Gentry, D. Emmitt, B. Demoz, and R. Atlas, 2017: The impact of Doppler wind lidar measurements on high-impact weather forecasting: Regional OSSE and data assimilation studies. Data Assimilation for Atmospheric, Oceanic and Hydrologic Applications, S. K. Park and L. Xu, Eds., Springer, 259283, doi:10.1007/978-3-319-43415-5_12.

    • Crossref
    • Export Citation
  • Rogers, R., and Coauthors, 2006: The Intensity Forecasting Experiment: A NOAA multiyear field program for improving tropical cyclone intensity forecasts. Bull. Amer. Meteor. Soc., 87, 15231537, doi:10.1175/BAMS-87-11-1523.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rogers, R., and Coauthors, 2013: NOAA’S Hurricane Intensity Forecasting Experiment: A progress report. Bull. Amer. Meteor. Soc., 94, 859882, doi:10.1175/BAMS-D-12-00089.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ruf, C. S., S. Gleason, Z. Jelenak, S. Katzberg, A. Ridley, R. Rose, J. Scherrer, and V. Zavorotny, 2013: The NASA EV-2 Cyclone Global Navigation Satellite System (CYGNSS) mission. Proc. 2013 IEEE Aerospace Conf., Big Sky, MT, IEEE, doi:10.1109/AERO.2013.6497202.

    • Crossref
    • Export Citation
  • Ruf, C. S., and Coauthors, 2016a: New ocean winds satellite mission to probe hurricanes and tropical convection. Bull. Amer. Meteor. Soc., 97, 385395, doi:10.1175/BAMS-D-14-00218.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ruf, C. S., and Coauthors, 2016b: CYGNSS Handbook: Cyclone Global Navigation Satellite System; Deriving Surface Wind Speeds in Tropical Cyclones. University of Michigan, 143 pp. [Available online at http://clasp-research.engin.umich.edu/missions/cygnss/reference/cygnss-mission/CYGNSS_Handbook_April2016.pdf.]

  • Skamarock, W. C., and Coauthors, 2008: A description of the Advanced Research WRF version 3. NCAR Tech. Note, NCAR/TN-475+STR, 113 pp., doi:10.5065/D68S4MVH.

    • Crossref
    • Export Citation
  • Tallapragada, V., and Coauthors, 2015: Hurricane Weather Research and Forecasting (HWRF) model: 2015 scientific documentation. HWRF v3.7a, HWRF Development Testbed Center Tech. Rep. 113 pp. [Available online at http://www.dtcenter.org/HurrWRF/users/docs/scientific_documents/HWRF_v3.7a_SD.pdf.]

  • Wu, W. S., D. F. Parrish, and R. J. Purser, 2002: Three-dimensional variational analysis with spatially inhomogeneous covariances. Mon. Wea. Rev., 130, 29052916, doi:10.1175/1520-0493(2002)130<2905:TDVAWS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, D.-L., and L. Zhu, 2012: Roles of upper-level processes in tropical cyclogenesis. Geophys. Res. Lett., 39, L17804, doi:10.1029/2012GL053140.

  • Zhang, H., and Z. Pu, 2014: Influence of assimilating surface observations on the prediction of landfalls of Hurricane Katrina (2005) with ensemble Kalman filter. Mon. Wea. Rev., 142, 29152934, doi:10.1175/MWR-D-14-00014.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, J. A., D. S. Nolan, R. F. Rogers, and V. Tallapragada, 2015: Evaluating the impact of improvements in the boundary layer parameterization on hurricane intensity and structure forecasts in HWRF. Mon. Wea. Rev., 143, 31363155, doi:10.1175/MWR-D-14-00339.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, L., and Z. Pu, 2010: An Observing System Simulation Experiment (OSSE) to assess the impact of Doppler wind lidar (DWL) measurements on the numerical simulation of a tropical cyclone. Adv. Meteor., 2010, 743863, doi:10.1155/2010/743863.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 9 9 9
PDF Downloads 1 1 1

Impact of CYGNSS Ocean Surface Wind Speeds on Numerical Simulations of a Hurricane in Observing System Simulation Experiments

View More View Less
  • 1 Department of Atmospheric Sciences, University of Utah, Salt Lake City, Utah
  • | 2 Department of Climate and Space Sciences and Engineering, University of Michigan, Ann Arbor, Michigan
  • | 3 NOAA/Atlantic Oceanographic and Meteorological Laboratory, Miami, Florida
Restricted access

Abstract

The NASA Cyclone Global Navigation Satellite System (CYGNSS) was launched in late 2016. It will make available frequent ocean surface wind speed observations throughout the life cycle of tropical storms and hurricanes. In this study, the impact of CYGNSS ocean surface winds on numerical simulations of a hurricane case is assessed with a research version of the Hurricane Weather Research and Forecasting Model and a Gridpoint Statistical Interpolation analysis system in a regional observing system simulation experiment framework. Two different methods for reducing the CYGNSS data volume were tested: one in which the winds were thinned and one in which the winds were superobbed.

The results suggest that assimilation of the CYGNSS winds has great potential to improve hurricane track and intensity simulations through improved representations of the surface wind fields, hurricane inner-core structures, and surface fluxes. The assimilation of the superobbed CYGNSS data seems to be more effective in improving hurricane track forecasts than thinning the data.

Current affiliation: NASA Jet Propulsion Laboratory, Pasadena, California.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author e-mail: Dr. Zhaoxia Pu, zhaoxia.pu@utah.edu

Abstract

The NASA Cyclone Global Navigation Satellite System (CYGNSS) was launched in late 2016. It will make available frequent ocean surface wind speed observations throughout the life cycle of tropical storms and hurricanes. In this study, the impact of CYGNSS ocean surface winds on numerical simulations of a hurricane case is assessed with a research version of the Hurricane Weather Research and Forecasting Model and a Gridpoint Statistical Interpolation analysis system in a regional observing system simulation experiment framework. Two different methods for reducing the CYGNSS data volume were tested: one in which the winds were thinned and one in which the winds were superobbed.

The results suggest that assimilation of the CYGNSS winds has great potential to improve hurricane track and intensity simulations through improved representations of the surface wind fields, hurricane inner-core structures, and surface fluxes. The assimilation of the superobbed CYGNSS data seems to be more effective in improving hurricane track forecasts than thinning the data.

Current affiliation: NASA Jet Propulsion Laboratory, Pasadena, California.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author e-mail: Dr. Zhaoxia Pu, zhaoxia.pu@utah.edu
Save