• Davis, R. E., 2010: On the coastal-upwelling overturning cell. J. Mar. Res., 68, 369385, doi:10.1357/002224010794657173.

  • Davis, R. E., C. C. Eriksen, and C. P. Jones, 2003: Autonomous bouyancy-driven underwater gliders. Technology and Applications of Autonomous Underwater Vehicles, G. Griffiths, Ed., Taylor and Francis, 37–58.

    • Crossref
    • Export Citation
  • Davis, R. E., M. D. Ohman, D. L. Rudnick, J. T. Sherman, and B. A. Hodges, 2008: Glider surveillance of physics and biology in the southern California Current System. Limnol. Oceanogr., 53, 21512168, doi:10.4319/lo.2008.53.5_part_2.2151.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Davis, R. E., W. S. Kessler, and J. T. Sherman, 2012: Gliders measure western boundary current transport from the South Pacific to the equator. J. Phys. Oceanogr., 42, 20012013, doi:10.1175/JPO-D-12-022.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Eriksen, C. C., T. J. Osse, R. D. Light, T. Wen, T. W. Lehman, P. L. Sabin, J. W. Ballard, and A. M. Chiodi, 2001: Seaglider: A long-range autonomous underwater vehicle for oceanographic research. IEEE J. Oceanic Eng., 26, 424436, doi:10.1109/48.972073.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fischer, J., and M. Visbeck, 1993: Deep velocity profiling with self-contained ADCPs. J. Atmos. Oceanic Technol., 10, 764773, doi:10.1175/1520-0426(1993)010<0764:DVPWSC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fofonoff, N. P., and R. C. Millard Jr., 1983: Algorithms for computation of fundamental properties of seawater. UNESCO Technical Papers in Marine Science 44, 53 pp.

  • Halkin, D. T., and H. T. Rossby, 1985: The structure and transport of the Gulf Stream at 73°W. J. Phys. Oceanogr., 15, 14391452, doi:10.1175/1520-0485(1985)015<1439:TSATOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Johns, W. E., T. J. Shay, J. M. Bane, and D. R. Watts, 1995: Gulf Stream structure, transport, and recirculation near 68°W. J. Geophys. Res., 100, 817838, doi:10.1029/94JC02497.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Johnston, T. M. S., and D. L. Rudnick, 2015: Trapped diurnal internal tides, propagating semidiurnal internal tides, and mixing estimates in the California Current System from sustained glider observations, 2006–2012. Deep-Sea Res. II, 112, 6178, doi:10.1016/j.dsr2.2014.03.009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Miles, T., G. Seroka, J. Kohut, O. Schofield, and S. Glenn, 2015: Glider observations and modeling of sediment transport in Hurricane Sandy. J. Geophys. Res. Oceans, 120, 17711791, doi:10.1002/2014JC010474.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ohman, M. D., and Coauthors, 2013: Autonomous ocean measurements in the California Current ecosystem. Oceanography, 26, 1825, doi:10.5670/oceanog.2013.41.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rossby, T., and H.-M. Zhang, 2001: The near-surface velocity and potential vorticity structure of the Gulf Stream. J. Mar. Res., 59, 949975, doi:10.1357/00222400160497724.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rudnick, D. L., 2016: Ocean research enabled by underwater gliders. Annu. Rev. Mar. Sci., 8, 519541, doi:10.1146/annurev-marine-122414-033913.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rudnick, D. L., and S. T. Cole, 2011: On sampling the ocean using underwater gliders. J. Geophys. Res., 116, C08010, doi:10.1029/2010JC006849.

    • Search Google Scholar
    • Export Citation
  • Rudnick, D. L., R. E. Davis, C. C. Eriksen, D. M. Fratantoni, and M. J. Perry, 2004: Underwater gliders for ocean research. Mar. Technol. Soc. J., 38, 7384, doi:10.4031/002533204787522703.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rudnick, D. L., T. M. S. Johnston, and J. T. Sherman, 2013: High-frequency internal waves near the Luzon Strait observed by underwater gliders. J. Geophys. Res. Oceans, 118, 774–784, doi:10.1002/jgrc.20083.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rudnick, D. L., R. E. Davis, and J. T. Sherman, 2016: Spray underwater glider operations. J. Atmos. Oceanic Technol., 33, 11131122, doi:10.1175/JTECH-D-15-0252.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schofield, O., and Coauthors, 2007: Slocum gliders: Robust and ready. J. Field Rob., 24, 473485, doi:10.1002/rob.20200.

  • Sherman, J., R. E. Davis, W. B. Owens, and J. Valdes, 2001: The autonomous underwater glider “Spray.” IEEE J. Oceanic Eng., 26, 437446, doi:10.1109/48.972076.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Todd, R. E., D. L. Rudnick, and R. E. Davis, 2009: Monitoring the greater San Pedro Bay region using autonomous underwater gliders during fall of 2006. J. Geophys. Res., 114, C06001, doi:10.1029/2008JC005086.

    • Search Google Scholar
    • Export Citation
  • Todd, R. E., D. L. Rudnick, R. E. Davis, and M. D. Ohman, 2011a: Underwater gliders reveal rapid arrival of El Niño effects off California’s coast. Geophys. Res. Lett., 38, L03609, doi:10.1029/2010GL046376.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Todd, R. E., D. L. Rudnick, M. R. Mazloff, R. E. Davis, and B. D. Cornuelle, 2011b: Poleward flows in the southern California Current System: Glider observations and numerical simulation. J. Geophys. Res., 116, C02026, doi:10.1029/2010JC006536.

    • Search Google Scholar
    • Export Citation
  • Todd, R. E., D. L. Rudnick, M. R. Mazloff, B. D. Cornuelle, and R. E. Davis, 2012: Thermohaline structure in the California Current System: Observations and modeling of spice variance. J. Geophys. Res., 117, C02008, doi:10.1029/2011JC007589.

    • Search Google Scholar
    • Export Citation
  • Todd, R. E., W. B. Owens, and D. L. Rudnick, 2016: Potential vorticity structure in the North Atlantic western boundary current from underwater glider observations. J. Phys. Oceanogr., 46, 327348, doi:10.1175/JPO-D-15-0112.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Visbeck, M., 2002: Deep velocity profiling using lowered acoustic Doppler current profilers: Bottom track and inverse solutions. J. Atmos. Oceanic Technol., 19, 794807, doi:10.1175/1520-0426(2002)019<0794:DVPULA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zaba, K. D., and D. L. Rudnick, 2016: The 2014–2015 warming anomaly in the Southern California Current System observed by underwater gliders. Geophys. Res. Lett., 43, 12411248, doi:10.1002/2015GL067550.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 61 61 61
PDF Downloads 37 37 37

Absolute Velocity Estimates from Autonomous Underwater Gliders Equipped with Doppler Current Profilers

View More View Less
  • 1 Woods Hole Oceanographic Institution, Woods Hole, Massachusetts
  • | 2 Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California
  • | 3 Woods Hole Oceanographic Institution, Woods Hole, Massachusetts
Restricted access

Abstract

Doppler current profilers on autonomous underwater gliders measure water velocity relative to the moving glider over vertical ranges of O(10) m. Measurements obtained with 1-MHz Nortek acoustic Doppler dual current profilers (AD2CPs) on Spray gliders deployed off Southern California, west of the Galápagos Archipelago, and in the Gulf Stream are used to demonstrate methods of estimating absolute horizontal velocities in the upper 1000 m of the ocean. Relative velocity measurements nearest to a glider are used to infer dive-dependent flight parameters, which are then used to correct estimates of absolute vertically averaged currents to account for the accumulation of biofouling during months-long glider missions. The inverse method for combining Doppler profiler measurements of relative velocity with absolute references to estimate profiles of absolute horizontal velocity is reviewed and expanded to include additional constraints on the velocity solutions. Errors arising from both instrumental bias and decreased abundance of acoustic scatterers at depth are considered. Though demonstrated with measurements from a particular combination of platform and instrument, these techniques should be applicable to other combinations of gliders and Doppler current profilers.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author e-mail: Robert E. Todd, rtodd@whoi.edu

Abstract

Doppler current profilers on autonomous underwater gliders measure water velocity relative to the moving glider over vertical ranges of O(10) m. Measurements obtained with 1-MHz Nortek acoustic Doppler dual current profilers (AD2CPs) on Spray gliders deployed off Southern California, west of the Galápagos Archipelago, and in the Gulf Stream are used to demonstrate methods of estimating absolute horizontal velocities in the upper 1000 m of the ocean. Relative velocity measurements nearest to a glider are used to infer dive-dependent flight parameters, which are then used to correct estimates of absolute vertically averaged currents to account for the accumulation of biofouling during months-long glider missions. The inverse method for combining Doppler profiler measurements of relative velocity with absolute references to estimate profiles of absolute horizontal velocity is reviewed and expanded to include additional constraints on the velocity solutions. Errors arising from both instrumental bias and decreased abundance of acoustic scatterers at depth are considered. Though demonstrated with measurements from a particular combination of platform and instrument, these techniques should be applicable to other combinations of gliders and Doppler current profilers.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author e-mail: Robert E. Todd, rtodd@whoi.edu
Save