Estimation of Near-Real-Time Outgoing Longwave Radiation from Cross-Track Infrared Sounder (CrIS) Radiance Measurements

Kexin Zhang I. M. Systems Group, Inc., Rockville, Maryland

Search for other papers by Kexin Zhang in
Current site
Google Scholar
PubMed
Close
,
Mitchell D. Goldberg NOAA/JPSS, Lanham, Maryland

Search for other papers by Mitchell D. Goldberg in
Current site
Google Scholar
PubMed
Close
,
Fengying Sun Stinger Ghaffarian Technologies, Inc., Greenbelt, Maryland

Search for other papers by Fengying Sun in
Current site
Google Scholar
PubMed
Close
,
Lihang Zhou NOAA/NESDIS/STAR, College Park, Maryland

Search for other papers by Lihang Zhou in
Current site
Google Scholar
PubMed
Close
,
Walter W. Wolf NOAA/NESDIS/STAR, College Park, Maryland

Search for other papers by Walter W. Wolf in
Current site
Google Scholar
PubMed
Close
,
Changyi Tan I. M. Systems Group, Inc., Rockville, Maryland

Search for other papers by Changyi Tan in
Current site
Google Scholar
PubMed
Close
,
Nicholas R. Nalli I. M. Systems Group, Inc., Rockville, Maryland

Search for other papers by Nicholas R. Nalli in
Current site
Google Scholar
PubMed
Close
, and
Quanhua Liu NOAA/NESDIS/STAR, College Park, Maryland

Search for other papers by Quanhua Liu in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

This study describes the algorithm for deriving near-real-time outgoing longwave radiation (OLR) from Cross-Track Infrared Sounder (CrIS) hyperspectral infrared sounder radiance measurements. The estimation of OLR on a near-real-time basis provides a unique perspective for studying the variability of Earth’s current atmospheric radiation budget. CrIS-derived OLR values are estimated as a weighted linear combination of CrIS-adjusted “pseudochannel” radiances. The algorithm uses the Atmospheric Infrared Sounder (AIRS) as the transfer instrument, and a least squares regression algorithm is applied to generate two sets of regression coefficients. The first set of regression coefficients is derived from collocated Clouds and the Earth’s Radiant Energy System (CERES) OLR on Aqua and pseudochannel radiances calculated from AIRS radiances. The second set of coefficients is derived to adjust the CrIS pseudochannel radiance to account for the differences in pseudochannel radiances between AIRS and CrIS. The CrIS-derived OLR is then validated by using a limited set of available CERES SNPP OLR observations over 1° × 1° global grids, as well as monthly OLR mean and interannual differences against CERES OLR datasets from SNPP and Aqua. The results show that the bias of global CrIS OLR estimation is within ±2 W m−2 and that the standard deviation is within 5 W m−2 for all conditions, and ±1 and 3 W m−2 for homogeneous scenes. The interannual CrIS-derived OLR differences agree well with Aqua CERES interannual OLR differences on a 1° × 1° spatial scale, with only a small drift of the global mean of these two datasets of around 0.004 W m−2.

Denotes content that is immediately available upon publication as open access.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author e-mail: Kexin Zhang, kexin.zhang@noaa.gov

Abstract

This study describes the algorithm for deriving near-real-time outgoing longwave radiation (OLR) from Cross-Track Infrared Sounder (CrIS) hyperspectral infrared sounder radiance measurements. The estimation of OLR on a near-real-time basis provides a unique perspective for studying the variability of Earth’s current atmospheric radiation budget. CrIS-derived OLR values are estimated as a weighted linear combination of CrIS-adjusted “pseudochannel” radiances. The algorithm uses the Atmospheric Infrared Sounder (AIRS) as the transfer instrument, and a least squares regression algorithm is applied to generate two sets of regression coefficients. The first set of regression coefficients is derived from collocated Clouds and the Earth’s Radiant Energy System (CERES) OLR on Aqua and pseudochannel radiances calculated from AIRS radiances. The second set of coefficients is derived to adjust the CrIS pseudochannel radiance to account for the differences in pseudochannel radiances between AIRS and CrIS. The CrIS-derived OLR is then validated by using a limited set of available CERES SNPP OLR observations over 1° × 1° global grids, as well as monthly OLR mean and interannual differences against CERES OLR datasets from SNPP and Aqua. The results show that the bias of global CrIS OLR estimation is within ±2 W m−2 and that the standard deviation is within 5 W m−2 for all conditions, and ±1 and 3 W m−2 for homogeneous scenes. The interannual CrIS-derived OLR differences agree well with Aqua CERES interannual OLR differences on a 1° × 1° spatial scale, with only a small drift of the global mean of these two datasets of around 0.004 W m−2.

Denotes content that is immediately available upon publication as open access.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author e-mail: Kexin Zhang, kexin.zhang@noaa.gov
Save
  • Aumann, H., and Coauthors, 2003: AIRS/AMSU/HSB on the Aqua mission: Design, science objectives, data products, and processing systems. IEEE Trans. Geosci. Remote Sens., 41, 253264, doi:10.1109/TGRS.2002.808356.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chelliah, M., and P. Arkin, 1992: Large-scale interannual variability of monthly outgoing longware radiation anomalies over the global tropics. J. Climate, 5, 371389, doi:10.1175/1520-0442(1992)005<0371:LSIVOM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chiodi, A. M., and D. E. Harrison, 2010: Characterizing warm-ENSO variability in the equatorial Pacific: An OLR perspective. J. Climate, 23, 24282439, doi:10.1175/2009JCLI3030.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chu, P.-S., and J.-B. Wang, 1997: Recent climate change in the tropical western Pacific and Indian Ocean regions as detected by outgoing longwave radiation records. J. Climate, 10, 636646, doi:10.1175/1520-0442(1997)010<0636:RCCITT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Crowley, T. J., and G. R. North, 1991: Paleoclimatology. Oxford University Press, 339 pp.

  • Das, B., W. Chen, M. Tsidulko, Y. Zhao, V. Mikles, K. Sprietzer, V. Dharmawardane, and W. Wolf, 2015: Testing, troubleshooting and integrating changes to Joint Polar Satellite Systems (JPSS) algorithms using Algorithm Development Library (ADL). 20th Conf. on Satellite Meteorology and Oceanography, Phoenix, AZ, Amer. Meteor. Soc., 604. [Available online at http://ams.confex.com/ams/95Annual/webprogram/Handout/Paper260488/AMS2015_BigyaniDas_Poster.pdf.]

  • Diebel, D., F. Cayla, and T. Phulpin, 1996: IASI mission rationale, and requirements. Tech. Rep. IASM-0000-10-CNE/EUM, EUMETSAT/CNES/Météo-France, 35 pp.

  • Ellingson, R., D. Yanuk, H.-T. Lee, and A. Gruber, 1989: A technique for estimating outgoing longwave radiation from HIRS radiance observations. J. Atmos. Oceanic Technol., 6, 706711, doi:10.1175/1520-0426(1989)006<0706:ATFEOL>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ellingson, R., H.-T. Lee, and D. Yanuk, 1994: Validation of a technique for estimating outgoing longwave radiation from HIRS radiance observations. J. Atmos. Oceanic Technol., 11, 357365, doi:10.1175/1520-0426(1994)011<0357:VOATFE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Goldberg, M. D., H. Kilcoyne, H. Cikanek, and A. Mehta, 2013: Joint Polar Satellite System: The United States next generation civilian polar-orbiting environmental satellite system. J. Geophys. Res. Atmos., 118, 13 46313 475, doi:10.1002/2013JD020389.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lee, H.-T., A. Gruber, R. Ellingson, and I. Laszlo, 2007: Development of the HIRS outgoing longwave radiation climate dataset. J. Atmos. Oceanic Technol., 24, 20292047, doi:10.1175/2007JTECHA989.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Loeb, N. G., S. Kato, K. Loukachine, and N. Manalo-Smith, 2005: Angular distribution models for top-of-atmosphere radiative flux estimation from the Clouds and the Earth’s Radiant Energy System (CERES) instrument on the Terra satellite. Part I: Methodology. J. Atmos. Oceanic Technol., 22, 338351, doi:10.1175/JTECH1712.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Loeb, N. G., S. Kato, K. Loukachine, N. Manalo-Smith, and D. R. Doelling, 2007: Angular distribution models for top-of-atmosphere radiative flux estimation from the Clouds and the Earth’s Radiant Energy System (CERES) instrument on the Terra satellite. Part II: Validation. J. Atmos. Oceanic Technol., 24, 564584, doi:10.1175/JTECH1983.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nalli, N. R., C. D. Barnet, E. S. Maddy, and A. Gambacorta, 2012: On the angular effect of residual clouds and aerosols in clear-sky infrared window radiance observations: Sensitivity analyses. J. Geophys. Res., 117, D12208, doi:10.1029/2012JD017667.

    • Search Google Scholar
    • Export Citation
  • Ohring, G., A. Gruber, and R. Ellingson, 1984: Satellite determinations of the relationship between total longwave radiation flux and infrared window radiance. J. Climate Appl. Meteor., 23, 416425, doi:10.1175/1520-0450(1984)023<0416:SDOTRB>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schmetz, J., and Q. Liu, 1988: Outgoing longwave radiation and its diurnal variation at regional scales derived from Meteosat. J. Geophys. Res., 93, 11 19211 204, doi:10.1029/JD093iD09p11192.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Strow, L., S. Hannon, S. DeSouza-Machado, D. Tobin, and H. Motteler, 2003: An overview of the AIRS radiative transfer model. IEEE Trans. Geosci. Remote Sens., 41, 303313, doi:10.1109/TGRS.2002.808244.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Su, W., J. Corbett, Z. Eitzen, and L. Liang, 2015a: Next-generation angular distribution models for top-of-atmosphere radiative flux calculation from the CERES instruments: Methodology. Atmos. Meas. Tech., 8, 611632, doi:10.5194/amt-8-611-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Su, W., J. Corbett, Z. Eitzen, and L. Liang, 2015b: Next-generation angular distribution models for top-of-atmosphere radiative flux calculation from the CERES instruments: Validation. Atmos. Meas. Tech., 8, 44894536, doi:10.5194/amtd-8-4489-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sun, F., M. Goldberg, X. Liu, and J. Bates, 2010: Estimation of outgoing longwave radiation from Atmospheric Infrared Sounder radiance measurements. J. Geophys. Res., 115, D09103, doi:10.1029/2009JD012799.

    • Search Google Scholar
    • Export Citation
  • Susskind, J., P. Piraino, L. Rokke, L. Iredell, and A. Mehta, 1997: Characteristics of the TOVS Pathfinder Path A dataset. Bull. Amer. Meteor. Soc., 78, 14491472, doi:10.1175/1520-0477(1997)078<1449:COTTPP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Susskind, J., G. Molnar, L. Iredell, and N. Loeb, 2012: Interannual variability of outgoing longwave radiation as observed by AIRS and CERES. J. Geophys. Res., 117, D23107, doi:10.1029/2012JD017997.

    • Search Google Scholar
    • Export Citation
  • Wang, L., Y. Han, D. Tremblay, F. Weng, and M. Goldberg, 2012: Inter-comparison of NPP/CrIS radiances with VIIRS, AIRS, and IASI: A post-launch calibration assessment. Earth Observing Missions and Sensors: Development, Implementation, and Characterization II, H. Shimoda et al., Eds., International Society for Optical Engineering (SPIE Proceedings, Vol. 8528), 85280J, doi:10.1117/12.978769.

    • Crossref
    • Export Citation
  • Wielicki, B. A., B. R. Barkstrom, E. F. Harrison, R. B. Lee, G. L. Smith, and J. E. Cooper, 1996: Clouds and the Earth’s Radiant Energy System (CERES): An earth observing system experiment. Bull. Amer. Meteor. Soc., 77, 853868, doi:10.1175/1520-0477(1996)077<0853:CATERE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xie, P., and P. Arkin, 1996: Analyses of global monthly precipitation using gauge observations, satellite estimates, and numerical model predictions. J. Climate, 9, 840858, doi:10.1175/1520-0442(1996)009<0840:AOGMPU>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 572 109 3
PDF Downloads 276 50 2