Characteristics of Stratospheric Winds over Jiuquan (41.1°N, 100.2°E) Using Rocketsonde Data in 1967–2004

Z. Sheng College of Meteorology and Oceanology, People’s Liberation Army University of Science and Technology, and Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Nanjing University of Information Science and Technology, Nanjing, China

Search for other papers by Z. Sheng in
Current site
Google Scholar
PubMed
Close
,
J. W. Li College of Meteorology and Oceanology, People's Liberation Army University of Science and Technology, Nanjing, China

Search for other papers by J. W. Li in
Current site
Google Scholar
PubMed
Close
,
Y. Jiang College of Meteorology and Oceanology, People's Liberation Army University of Science and Technology, Nanjing, China

Search for other papers by Y. Jiang in
Current site
Google Scholar
PubMed
Close
,
S. D. Zhou College of Meteorology and Oceanology, People's Liberation Army University of Science and Technology, and Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Nanjing University of Information Science and Technology, Nanjing, China

Search for other papers by S. D. Zhou in
Current site
Google Scholar
PubMed
Close
, and
W. L. Shi College of Meteorology and Oceanology, People's Liberation Army University of Science and Technology, and Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Nanjing University of Information Science and Technology, Nanjing, China

Search for other papers by W. L. Shi in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Stratospheric winds play a significant role in middle atmosphere dynamics, model research, and carrier rocket experiments. For the first time, 65 sets of rocket sounding experiments conducted at Jiuquan (41.1°N, 100.2°E), China, from 1967 to 2004 are presented to study horizontal wind fields in the stratosphere. At a fixed height, wind speed obeys the lognormal distribution. Seasonal mean winds are westerly in winter and easterly in summer. In spring and autumn, zonal wind directions change from the upper to the lower stratosphere. The monthly zonal mean winds have an annual cycle period with large amplitudes at high altitudes. The correlation coefficients for zonal winds between observations and the Horizontal Wind Model (HWM) with all datasets are 0.7. The MERRA reanalysis is in good agreement with rocketsonde data according to the zonal winds comparison with a coefficient of 0.98. The sudden stratospheric warming is an important contribution to biases in the HWM, because it changes the zonal wind direction in the midlatitudes. Both the model and the reanalysis show dramatic meridional wind differences with the observation data.

Publisher’s Note: This article was revised on 3 April 2017 to correct the name and contact information for the corresponding author.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author e-mail: J. W. Li, 15651009118@sina.cn; 19994035@sina.com

Abstract

Stratospheric winds play a significant role in middle atmosphere dynamics, model research, and carrier rocket experiments. For the first time, 65 sets of rocket sounding experiments conducted at Jiuquan (41.1°N, 100.2°E), China, from 1967 to 2004 are presented to study horizontal wind fields in the stratosphere. At a fixed height, wind speed obeys the lognormal distribution. Seasonal mean winds are westerly in winter and easterly in summer. In spring and autumn, zonal wind directions change from the upper to the lower stratosphere. The monthly zonal mean winds have an annual cycle period with large amplitudes at high altitudes. The correlation coefficients for zonal winds between observations and the Horizontal Wind Model (HWM) with all datasets are 0.7. The MERRA reanalysis is in good agreement with rocketsonde data according to the zonal winds comparison with a coefficient of 0.98. The sudden stratospheric warming is an important contribution to biases in the HWM, because it changes the zonal wind direction in the midlatitudes. Both the model and the reanalysis show dramatic meridional wind differences with the observation data.

Publisher’s Note: This article was revised on 3 April 2017 to correct the name and contact information for the corresponding author.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author e-mail: J. W. Li, 15651009118@sina.cn; 19994035@sina.com
Save
  • Andrews, D. G., J. R. Holton, and C. B. Leovy, 1987: Middle Atmospheric Dynamics. International Geophysics Series, Vol. 40, Academic Press, 489 pp.

  • Baumgaertner, A. J. G., 2007: Observations of middle atmosphere dynamics over Antarctica. Ph.D. thesis, University of Canterbury, 201 pp.

  • Chen, X., X. Hu, and C. Xiao, 2012: Variability of MLT winds and waves over mid-latitude during the 2000/2001 and 2009/2010 winter stratospheric sudden warming. Ann. Geophys., 30, 9911001, doi:10.5194/angeo-30-991-2012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Drob, D. P., and Coauthors, 2008: An empirical model of the Earth’s horizontal wind fields: HWM07. J. Geophys. Res., 113, A12304, doi:10.1029/2008JA013668.

    • Search Google Scholar
    • Export Citation
  • Fan, Z.-Q., Z. Sheng, L. Wan, H.-Q. Shi, and Y. Jiang, 2013: Comprehensive assessment of the accuracy of the data from near space meteorological rocket sounding. Acta Phys. Sin., 62, 199601, doi:10.7498/aps.62.199601.

    • Search Google Scholar
    • Export Citation
  • Fritts, D. C., and Coauthors, 2010: Southern Argentina agile meteor radar: System design and initial measurements of large-scale winds and tides. J. Geophys. Res., 115, D18112, doi:10.1029/2010JD013850.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gao, H., J. Xu, W. Ward, and A. K. Smith, 2011: Temporal evolution of nightglow emission responses to SSW events observed by TIMED/SABER. J. Geophys. Res., 116, D19110, doi:10.1029/2011JD015936.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hildebrand, J., G. Baumgarten, J. Fiedler, U.-P. Hoppe, B. Kaifler, F.-J. Lübken, and B. P. Williams, 2012: Combined wind measurements by two different lidar instruments in the Arctic middle atmosphere. Atmos. Meas. Tech., 5, 24332445, doi:10.5194/amt-5-2433-2012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jiang, G., J. Xu, D. Shi, F. Wei, and L. Wang, 2011: Observations of the first meteorological rocket of the Meridian Space Weather Monitoring Project. Chin. Sci. Bull., 56, 21312137, doi:10.1007/s11434-011-4537-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nordberg, W., L. Katchen, J. Theon, and W. Smith, 1965: Rocket observations of the structure of the mesosphere. J. Atmos. Sci., 22, 611622, doi:10.1175/1520-0469(1965)022<0611:ROOTSO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Polmar, N., 2001. Spyplane: The U-2 History Declassified. MBI Publishing Company, 288 pp.

  • Rienecker, M. M., and Coauthors, 2011: MERRA: NASA’s Modern-Era Retrospective Analysis for Research and Applications. J. Climate, 24, 36243648, doi:10.1175/JCLI-D-11-00015.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rüfenacht, R., N. Kämpfer, and A. Murk, 2012: First middle-atmospheric zonal wind profile measurements with a new ground-based microwave Doppler-spectro-radiometer. Atmos. Meas. Tech., 5, 26472659, doi:10.5194/amt-5-2647-2012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rüfenacht, R., A. Murk, N. Kämpfer, P. Eriksson, and S. A. Buehler, 2014: Middle-atmospheric zonal and meridional wind profiles from polar, tropical and midlatitudes with the ground-based microwave Doppler wind radiometer WIRA. Atmos. Meas. Tech., 7, 44914505, doi:10.5194/amt-7-4491-2014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schmidt, D. K., J. Stevens, and J. Roney, 2006: Near-space station-keeping performance of a large high-altitude notional airship. Proc. AIAA Atmospheric Flight Mechanics Conf. and Exhibit, Keystone, CO, American Institute of Aeronautics and Astronautics, AIAA 2006-6510, doi:10.2514/6.2006-6510.

    • Crossref
    • Export Citation
  • Shepherd, G. G., I. C. McDade, W. A. Gault, Y. J. Rochon, A. Scott, N. Rowlands, and G. Buttner, 2001: The Stratospheric Wind Interferometer for Transport Studies (SWIFT). Adv. Space Res., 27, 10711079, doi:10.1016/S0273-1177(01)00140-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shepherd, T. G., 2007: Transport in the middle atmosphere. J. Meteor. Soc. Japan, 85B, 165191, doi:10.2151/jmsj.85B.165.

  • Sica, R., and Coauthors, 2008: Validation of the Atmospheric Chemistry Experiment (ACE) version 2.2 temperature using ground-based and space-borne measurements. Atmos. Chem. Phys., 8, 3562, doi:10.5194/acp-8-35-2008.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sutton, E. K., R. S. Nerem, and J. M. Forbes, 2007: Density and winds in the thermosphere deduced from accelerometer data. J. Spacecr. Rockets, 44, 12101219, doi:10.2514/1.28641.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tsuda, T., Y. Murayama, K.-I. Oyama, H. Kanzawa, T. Nakamura, M. D. Yamanaka, S. Fukao, and S. Kato, 1992: Rocketsonde observations of the middle atmosphere dynamics at Uchinoura (31°N,131°E) during the DYANA campaign. Part II: Characteristics of gravity waves. J. Geomagn. Geoelectr., 44, 10091023.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, M. F., M. A. Geller, E. R. Nash, and M. E. Gelman, 1987: Global atmospheric circulation statistics—Four year averages. NASA Tech. Memo. NASA TM-100690, 74 pp. [Available online at https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19880004460.pdf.]

  • Zhang, K., E. Fu, D. Silcock, Y. Wang, and Y. Kuleshov, 2011: An investigation of atmospheric temperature profiles in the Australian region using collocated GPS radio occultation and radiosonde data. Atmos. Meas. Tech., 4, 20872092, doi:10.5194/amt-4-2087-2011.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 443 262 28
PDF Downloads 158 59 4