Bragg Scatter Detection by the WSR-88D. Part II: Assessment of ZDR Bias Estimation

Lindsey M. Richardson Radar Operations Center, National Weather Service, and Centuria Corporation, Norman, Oklahoma

Search for other papers by Lindsey M. Richardson in
Current site
Google Scholar
PubMed
Close
,
W. David Zittel Radar Operations Center, National Weather Service, Norman, Oklahoma

Search for other papers by W. David Zittel in
Current site
Google Scholar
PubMed
Close
,
Robert R. Lee Radar Operations Center, National Weather Service, Norman, Oklahoma

Search for other papers by Robert R. Lee in
Current site
Google Scholar
PubMed
Close
,
Valery M. Melnikov Cooperative Institute for Mesoscale Meteorological Studies, University of Oklahoma, and National Severe Storms Laboratory, Norman, Oklahoma

Search for other papers by Valery M. Melnikov in
Current site
Google Scholar
PubMed
Close
,
Richard L. Ice Radar Operations Center, National Weather Service, Norman, Oklahoma, and 557th Weather Wing, Offutt Air Force Base, Nebraska

Search for other papers by Richard L. Ice in
Current site
Google Scholar
PubMed
Close
, and
Jeffrey G. Cunningham 557th Weather Wing, Offutt Air Force Base, Nebraska

Search for other papers by Jeffrey G. Cunningham in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Clear-air Bragg scatter (CABS) is a refractivity gradient return generated by turbulent eddies that operational Weather Surveillance Radar-1988 Doppler (WSR-88D) systems can detect. The randomly oriented nature of the eddies results in a differential reflectivity (ZDR) value near 0 dB, and thus CABS can be used as an assessment of ZDR calibration in the absence of excessive contamination from precipitation or biota. An automated algorithm to estimate ZDR bias from CABS was developed by the Radar Operations Center and can be used to assess the calibration quality of the dual-polarized WSR-88D fleet. This technique supplements existing ZDR bias assessment tools, especially the use of other external targets, such as light rain and dry snow.

The estimates of ZDR bias from CABS using a 1700–1900 UTC time window were compared to estimates from the light rain and dry snow methods. Output from the automated CABS algorithm had approximately the same amount of bias reported as the light rain and dry snow estimates (within ±0.1 dB). As the 1700–1900 UTC time window appeared too restrictive, a modified version of the algorithm was tested to detect CABS diurnally on a volume-by-volume basis (continuous monitoring). Continuous monitoring resulted in a two- to fourfold increase in the number of days with CABS detections. Results suggest estimates from CABS are viable for many sites throughout the year and provide an important addition to existing bias estimation techniques.

For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author e-mail: Lindsey M. Richardson, lindsey.m.richardson@noaa.gov

Abstract

Clear-air Bragg scatter (CABS) is a refractivity gradient return generated by turbulent eddies that operational Weather Surveillance Radar-1988 Doppler (WSR-88D) systems can detect. The randomly oriented nature of the eddies results in a differential reflectivity (ZDR) value near 0 dB, and thus CABS can be used as an assessment of ZDR calibration in the absence of excessive contamination from precipitation or biota. An automated algorithm to estimate ZDR bias from CABS was developed by the Radar Operations Center and can be used to assess the calibration quality of the dual-polarized WSR-88D fleet. This technique supplements existing ZDR bias assessment tools, especially the use of other external targets, such as light rain and dry snow.

The estimates of ZDR bias from CABS using a 1700–1900 UTC time window were compared to estimates from the light rain and dry snow methods. Output from the automated CABS algorithm had approximately the same amount of bias reported as the light rain and dry snow estimates (within ±0.1 dB). As the 1700–1900 UTC time window appeared too restrictive, a modified version of the algorithm was tested to detect CABS diurnally on a volume-by-volume basis (continuous monitoring). Continuous monitoring resulted in a two- to fourfold increase in the number of days with CABS detections. Results suggest estimates from CABS are viable for many sites throughout the year and provide an important addition to existing bias estimation techniques.

For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author e-mail: Lindsey M. Richardson, lindsey.m.richardson@noaa.gov
Save
  • Adams, D. K., and A. C. Comrie, 1997: The North American monsoon. Bull. Amer. Meteor. Soc., 78, 21972213, doi:10.1175/1520-0477(1997)078<2197:TNAM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Atlas, D., 1959: Meteorological “angel” echoes. J. Meteor., 16, 611, doi:10.1175/1520-0469(1959)016<0006:ME>2.0.CO;2.

  • Bechini, R., L. Baldini, R. Cremonini, and E. Gorgucci, 2008: Differential reflectivity calibration for operational radars. J. Atmos. Oceanic Technol., 25, 15421555, doi:10.1175/2008JTECHA1037.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bringi, V. N., and V. Chandrasekar, 2001: Physically based parametric rain rate estimation algorithms. Polarimetric Doppler Weather Radar: Principles and Applications. Cambridge University Press, 636 pp.

    • Crossref
    • Export Citation
  • Crum, T. D., R. L. Alberty, and D. W. Burgess, 1993: Recording, archiving, and using WSR-88D data. Bull. Amer. Meteor. Soc., 74, 645653, doi:10.1175/1520-0477(1993)074<0645:RAAUWD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cunningham, J. G., W. D. Zittel, R. R. Lee, and R. L. Ice, 2013: Methods for identifying systematic differential reflectivity (Zdr) biases on the operational WSR-88D network. 36th Conf. on Radar Meteorology, Breckenridge, CO, Amer. Meteor. Soc., 9B.5. [Available online at https://ams.confex.com/ams/36Radar/webprogram/Paper228792.html.]

  • Davison, J. L., R. M. Rauber, and L. Di Girolamo, 2013a: A revised conceptual model of the tropical marine boundary layer. Part II: Detecting relative humidity layers using Bragg scattering from S-band radar. J. Atmos. Sci., 70, 30253046, doi:10.1175/JAS-D-12-0322.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Davison, J. L., R. M. Rauber, L. Di Girolamo, and M. A. LeMone, 2013b: A revised conceptual model of the tropical marine boundary layer. Part III: Bragg scattering layer statistical properties. J. Atmos. Sci., 70, 30473062, doi:10.1175/JAS-D-12-0323.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gorgucci, E., G. Scarchilli, and V. Chandrasekar, 1999: A procedure to calibrate multiparameter weather radar using properties of the rain medium. IEEE Trans. Geosci. Remote Sens., 37, 269276, doi:10.1109/36.739161.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hardy, K. R., and K. M. Glover, 1966: 24 hour history of radar angel activity at three wavelengths. Proc. 12th Conf. on Radar Meteorology, Norman, OK, Amer. Meteor. Soc., 264–268.

  • Ice, R. L., A. K. Heck, J. G. Cunningham, J. C. Hubbert, G. Meymaris, and M. Dixon, 2013: Polarimetric weather radar calibration—Engineering challenges. 36th Conf. on Radar Meteorology, Breckenridge, CO, Amer. Meteor. Soc., 9B4. [Available online at https://ams.confex.com/ams/36Radar/webprogram/Paper228789.html.]

  • Ice, R. L., A. K. Heck, J. G. Cunningham, and W. D. Zittel, 2014: Challenges of polarimetric weather radar calibration. Extended Abstracts, Eighth European Conf. on Radar and Hydrometeorology (ERAD 2014), Garmisch-Partenkirchen, Germany, DWD and DLR, 8.1. [Available online at https://www.roc.noaa.gov/wsr88d/PublicDocs/Publications/Polarimetric_Calibration_Challenges_ERAD_2014_Ice_final_July18.pdf.]

  • Martin, W. J., and A. Shapiro, 2007: Discrimination of bird and insect radar echoes in clear air using high-resolution radars. J. Atmos. Oceanic Technol., 24, 12151230, doi:10.1175/JTECH2038.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Meischner, P. F., V. N. Bringi, M. Hagen, and H. Höller, 1991: Multiparameter radar characterization of a melting layer compared with in situ measurements. Preprints, 25th Int. Conf. on Radar Meteorology, Paris, France, Amer. Meteor. Soc., 721–724.

  • Melnikov, V. M., R. J. Doviak, D. S. Zrnić, and D. J. Stensrud, 2011: Mapping Bragg scatter with a polarimetric WSR-88D. J. Atmos. Oceanic Technol., 28, 12731285, doi:10.1175/JTECH-D-10-05048.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Melnikov, V. M., D. Zrnić, M. Schmidt, and R. Murnan, 2013: ZDR calibration issues in the WDR-88Ds: Report on 2013-MOU. NOAA, 54 pp. [Available online at http://www.nssl.noaa.gov/publications/wsr88d_reports/WSR88D_ZDRcalib_Report_2013.pdf.]

  • Ottersten, H., 1969: Atmospheric structure and radar backscattering in clear air. Radio Sci., 4, 11791193, doi:10.1029/RS004i012p01179.

  • Peel, M. C., B. L. Finlayson, and T. A. McMahon, 2007: Updated world map of the Köppen-Geiger climate classification. Hydrol. Earth Syst. Sci., 11, 16331644, doi:10.5194/hess-11-1633-2007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Richardson, L. M., J. G. Cunningham, W. D. Zittel, R. B. Lee, R. L. Ice, V. M. Melnikov, N. P. Hoban, and J. G. Gebauer, 2017: Bragg scatter detection by the WSR-88D. Part I: Algorithm development. J. Atmos. Oceanic Technol., 34, 465478, doi:10.1175/JTECH-D-16-0030.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ryzhkov, A. V., S. E. Giangrande, V. M. Melnikov, and T. J. Schuur, 2005: Calibration issues of dual-polarization radar measurements. J. Atmos. Oceanic Technol., 22, 11381155, doi:10.1175/JTECH1772.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schaefer, G. W., 1976: Radar observations of insect flight. Insect Flight, R. C. Rainey, Ed., Symposia of the Royal Entomological Society of London, Vol. 7, John Wiley & Sons, 157–197.

  • Schuur, T. J., A. V. Ryzhkov, and D. S. Zrnić, 2001: A statistical analysis of 2D-video-disdrometer data: Impact on polarimetric rainfall estimation. Preprints, 30th Int. Conf. on Radar Meteorology, Munich, Germany, Amer. Meteor. Soc., 11B.4. [Available online at https://ams.confex.com/ams/30radar/techprogram/paper_21554.htm.]

  • Schuur, T. J., A. V. Ryzhkov, and D. R. Clabo, 2005: Climatological analysis of DSDs in Oklahoma as revealed by 2D-video disdrometer and polarimetric WSR-88D radar. 32nd Conf. on Radar Meteorology, Albuquerque, NM, Amer. Meteor. Soc., 15R.4. [Available online at https://ams.confex.com/ams/32Rad11Meso/techprogram/paper_95995.htm.]

  • SPC, 2013: Severe weather climatology. Storm Prediction Center, accessed 23 June 2015. [Available online at http://www.spc.noaa.gov/new/SVRclimo/climo.php?parm=anySvr.]

  • Straka, J. M., D. S. Zrnić, and A. V. Ryzhkov, 2000: Bulk hydrometeor classification and quantification using polarimetric radar data: Synthesis of relations. J. Appl. Meteor., 39, 13411372, doi:10.1175/1520-0450(2000)039<1341:BHCAQU>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tauber, M. J., C. A. Tauber, and S. Masaki, 1986: Seasonal Adaptation of Insects. Oxford University Press, 411 pp.

  • Vivekanandan, J., V. N. Bringi, M. Hagen, and P. Meischner, 1994: Polarimetric radar studies of atmospheric ice particles. IEEE Trans. Geosci. Remote Sens., 32, 110, doi:10.1109/36.285183.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, G., J. Sun, and E. Brandes, 2006: Improving parameterization of rain microphysics with 607 disdrometer and radar observations. J. Atmos. Sci., 63, 12731290, doi:10.1175/JAS3680.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zittel, W. D., J. G. Cunningham, R. R. Lee, L. M. Richardson, R. L. Ice, and V. M. Melnikov, 2014: Use of hydrometeors, Bragg scatter, and sun spikes to determine system ZDR biases in the WSR-88D fleet. Extended Abstracts, Eighth European Conf. on Radar in Meteorology and Hydrology (ERAD 2014), Garmisch-Partenkirchen, Germany, DWD and DLR, DAC.P12. [Available online at https://www.roc.noaa.gov/WSR88D/PublicDocs/Publications/132_Zittel.pdf.]

  • Zittel, W. D., R. R. Lee, L. M. Richardson, J. G. Cunningham, J. A. Schultz, and R. L. Ice, 2015: Geographical and seasonal availability of light rain, dry snow, and Bragg scatter to estimate WSR-88D ZDR system bias. 31st Conf. on Environmental Information Processing Technologies, Phoenix, AZ, Amer. Meteor. Soc., 11.2. [Available online at https://ams.confex.com/ams/95Annual/webprogram/Paper265374.html.]

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 615 249 12
PDF Downloads 362 126 7