Creation of a Gridded Dataset for the Southern Ocean with a Topographic Constraint Scheme

Keishi Shimada Tokyo University of Marine Science and Technology, Tokyo, Japan

Search for other papers by Keishi Shimada in
Current site
Google Scholar
PubMed
Close
,
Shigeru Aoki Institute of Low Temperature Science, Hokkaido University, Hokkaido, Japan

Search for other papers by Shigeru Aoki in
Current site
Google Scholar
PubMed
Close
, and
Kay I. Ohshima Institute of Low Temperature Science, Hokkaido University, Hokkaido, Japan

Search for other papers by Kay I. Ohshima in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

This study investigated a method for creating a climatological dataset with improved reproducibility and reliability for the Southern Ocean. Despite sparse observational sampling, the Southern Ocean has a dominant physical characteristic of a strong topographic constraint formed under weak stratification and strong Coriolis effect. To increase the fidelity of gridded data, the topographic constraint is incorporated into the interpolation method, the weighting function of which includes a contribution from bottom depth differences and horizontal distances. Spatial variability of physical properties was also analyzed to estimate a realistic decorrelation scale for horizontal distance and bottom depth differences using hydrographic datasets. A new gridded dataset, the topographic constraint incorporated (TCI), was then developed for temperature, salinity, and dissolved oxygen, using the newly derived weighting function and decorrelation scales. The root-mean-square (RMS) of the difference between the interpolated values and the neighboring observed values (RMS difference) was compared among available gridded datasets. That the RMS differences are smaller for the TCI than for the previous datasets by 12%–21% and 8%–20% for potential temperature and salinity, respectively, demonstrates the effectiveness of incorporating the topographic constraint and realistic decorrelation scales. Furthermore, a comparison of decorrelation scales and an analysis of interpolation error suggests that the decorrelation scales adopted in previous gridded datasets are 2 times or more larger than realistic scales and that the overestimation would increase the interpolation error. The interpolation method proposed in this study can be applied to other high-latitude oceans, which are weakly stratified but undersampled.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author e-mail: Keishi Shimada, kshima0@kaiyodai.ac.jp

Abstract

This study investigated a method for creating a climatological dataset with improved reproducibility and reliability for the Southern Ocean. Despite sparse observational sampling, the Southern Ocean has a dominant physical characteristic of a strong topographic constraint formed under weak stratification and strong Coriolis effect. To increase the fidelity of gridded data, the topographic constraint is incorporated into the interpolation method, the weighting function of which includes a contribution from bottom depth differences and horizontal distances. Spatial variability of physical properties was also analyzed to estimate a realistic decorrelation scale for horizontal distance and bottom depth differences using hydrographic datasets. A new gridded dataset, the topographic constraint incorporated (TCI), was then developed for temperature, salinity, and dissolved oxygen, using the newly derived weighting function and decorrelation scales. The root-mean-square (RMS) of the difference between the interpolated values and the neighboring observed values (RMS difference) was compared among available gridded datasets. That the RMS differences are smaller for the TCI than for the previous datasets by 12%–21% and 8%–20% for potential temperature and salinity, respectively, demonstrates the effectiveness of incorporating the topographic constraint and realistic decorrelation scales. Furthermore, a comparison of decorrelation scales and an analysis of interpolation error suggests that the decorrelation scales adopted in previous gridded datasets are 2 times or more larger than realistic scales and that the overestimation would increase the interpolation error. The interpolation method proposed in this study can be applied to other high-latitude oceans, which are weakly stratified but undersampled.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author e-mail: Keishi Shimada, kshima0@kaiyodai.ac.jp
Save
  • Alaka, H., and R. C. Elvander, 1972: Optimum interpolation from observations of mixed quality. Mon. Wea. Rev., 100, 612624, doi:10.1175/1520-0493(1972)100<0612:OIFOOM>2.3.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Aoki, S., Y. Kitade, K. Shimada, K. I. Ohshima, T. Tamura, C. C. Bajish, M. Moteki, and S. R. Rintoul, 2013: Widespread freshening in the seasonal ice zone near 140°E off the Adélie Land Coast, Antarctica, from 1994 to 2012. J. Geophys. Res. Oceans, 118, 60466063, doi:10.1002/2013JC009009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bindoff, N. L., and Coauthors, 2007: Observations: Oceanic climate change and sea level. Climate Change 2007: The Physical Science Basis, S. Solomon et al., Eds., Cambridge University Press, 385–432.

  • Boyer, T. P., S. Levitus, J. I. Antonov, R. A. Locarnini, and H. E. Garcia, 2005: Linear trends in salinity for the World Ocean, 1955–1998. Geophys. Res. Lett., 32, L01604, doi:10.1029/2004GL021791.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Boyer, T. P., and Coauthors, 2009: World Ocean Database 2009. NOAA Atlas NESDIS 66, 216 pp.

  • Boyer, T. P., and Coauthors, 2013: World Ocean Database 2013. NOAA Atlas NESDIS 72, 209 pp.

  • Bretherton, F. P., R. E. Davis, and C. B. Fandry, 1976: A technique for objective analysis and design of oceanographic experiments applied to MODE-73. Deep-Sea Res. Oceanogr. Abstr., 23, 559582, doi:10.1016/0011-7471(76)90001-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Emery, W. J., and R. E. Thomson, 1998: Data Analysis Methods in Physical Oceanography. Elsevier Science Ltd., 634 pp.

  • Gouretski, V. V., and K. P. Koltermann, 2004: WOCE global hydrographic climatology. Berichte des Bundesamtes für Seeschifffahrt und Hydrographie Rep. 35, 52 pp.

  • Jacobs, S. S., 1991: On the nature and significance of the Antarctic Slope Front. Mar. Chem., 35, 924, doi:10.1016/S0304-4203(09)90005-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Johnson, G. C., S. G. Purkey, and J. L. Bullister, 2008: Warming and freshening in the abyssal southeastern Indian Ocean. J. Climate, 21, 53515363, doi:10.1175/2008JCLI2384.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Katsumata, K., H. Nakano, and Y. Kumamoto, 2014: Dissolved oxygen change and freshening of Antarctic Bottom water along 62°S in the Australian-Antarctic Basin between 1995/1996 and 2012/2013. Deep-Sea Res. II, 114, 2738, doi:10.1016/j.dsr2.2014.05.016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kitade, Y., and Coauthors, 2014: Antarctic Bottom Water production from the Vincennes Bay Polynya, East Antarctica. Geophys. Res. Lett., 41, 35283534, doi:10.1002/2014GL059971.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Locarnini, R. A., A. V. Mishonov, J. I. Antonov, T. P. Boyer, H. E. Garcia, O. K. Baranova, M. M. Zweng, and D. R. Johnson, 2010: Temperature. Vol. 1, World Ocean Atlas 2009, NOAA Atlas NESDIS 68, 184 pp.

  • Marsland, S. J., N. L. Bindoff, G. D. Williams, and W. F. Budd, 2004: Modeling water mass formation in the Mertz Glacier Polynya and Adélie Depression, East Antarctica. J. Geophys. Res., 109, C11003, doi:10.1029/2004JC002441.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nihashi, S., and K. I. Ohshima, 2015: Circumpolar mapping of Antarctic coastal polynyas and landfast sea ice: Relationship and variability. J. Climate, 28, 36503670, doi:10.1175/JCLI-D-14-00369.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ohshima, K. I., and Coauthors, 2013: Antarctic Bottom Water production by intense sea-ice formation in the Cape Darnley polynya. Nat. Geosci., 6, 235240, doi:10.1038/ngeo1738.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Orsi, A. H., and T. Whitworth III, 2005: Southern Ocean. Vol. 1, Hydrographic Atlas of the World Ocean Circulation Experiment (WOCE), International WOCE Project Office, 223 pp.

  • Pedlosky, J., 1987: Geophysical Fluid Dynamics. 2nd ed. Springer, 624 pp.

    • Crossref
    • Export Citation
  • Pritchard, H. D., S. R. M. Ligtenberg, H. A. Fricker, D. G. Vaughan, M. R. Van Den Broeke, and L. Padman, 2012: Antarctic ice-sheet loss driven by basal melting of ice shelves. Nature, 484, 502505, doi:10.1038/nature10968.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Purkey, S. G., and G. C. Johnson, 2010: Warming of global abyssal and deep Southern Ocean waters between the 1990s and 2000s: Contribution to global heat and sea level rise budgets. J. Climate, 23, 63366351, doi:10.1175/2010JCLI3682.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Purkey, S. G., and G. C. Johnson, 2012: Global contraction of Antarctic Bottom Water between the 1980s and 2000s. J. Climate, 25, 58305844, doi:10.1175/JCLI-D-11-00612.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Purkey, S. G., and G. C. Johnson, 2013: Antarctic Bottom Water warming and freshening: Contributions to sea level rise, ocean freshwater budgets, and global heat gain. J. Climate, 26, 61056122, doi:10.1175/JCLI-D-12-00834.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reiniger, R. F., and C. F. Ross, 1968: A method of interpolation with application to oceanographic data. Deep-Sea Res. Oceanogr. Abstr., 15, 185193, doi:10.1016/0011-7471(68)90040-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ridgway, K. R., J. R. Dunn, and J. L. Wilkin, 2002: Ocean interpolation by four-dimensional least squares—Application to the waters around Australasia. J. Atmos. Oceanic Technol., 19, 13571375, doi:10.1175/1520-0426(2002)019<1357:OIBFDW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rignot, E., S. Jacobs, J. Mouginot, and B. Scheuchl, 2013: Ice-shelf melting around Antarctica. Science, 341, 266270, doi:10.1126/science.1235798.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Roquet, F., and Coauthors, 2014: A Southern Indian Ocean database of hydrographic profiles obtained with instrumented elephant seals. Nat. Sci. Data, 1, 140028, doi:10.1038/sdata.2014.28.

    • Search Google Scholar
    • Export Citation
  • Rye, C. D., A. C. Naveira Garabato, P. R. Holland, M. P. Meredith, A. J. G. Norser, C. W. Hughes, A. C. Coward, and D. J. Webb, 2014: Rapid sea-level rise along the Antarctic margins in response to increased glacial discharge. Nat. Geosci., 7, 732735, doi:10.1038/ngeo2230.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schmidtko, S., G. C. Johnson, and J. M. Lyman, 2013: MIMOC: A global monthly isopycnal upper-ocean climatology with mixed layers. J. Geophys. Res. Oceans, 118, 16581672, doi:10.1002/jgrc.20122.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schmidtko, S., K. J. Heywood, A. F. Thompson, and S. Aoki, 2014: Multidecadal warming of Antarctic waters. Science, 346, 12271231, doi:10.1126/science.1256117.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schmitz, W. J., Jr., 1996: The Pacific and Indian Oceans: A global update. Vol. 2, On the world ocean circulation, WHOI Tech. Rep. WHOI-96-08, 241 pp.

  • Shimada, K., S. Aoki, K. I. Ohshima, and S. R. Rintoul, 2012: Influence of Ross Sea Bottom Water changes on the warming and freshening of the Antarctic Bottom Water in the Australian-Antarctic Basin. Ocean Sci., 8, 419432, doi:10.5194/os-8-419-2012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sprintall, J., and G. Meyers, 1991: An optimal XBT sampling network for the eastern Pacific Ocean. J. Geophys. Res., 96, 10 53910 552, doi:10.1029/91JC00274.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tamura, T., K. I. Ohshima, and S. Nihashi, 2008: Mapping of sea ice production for Antarctic coastal polynyas. Geophys. Res. Lett., 35, L07606, doi:10.1029/2007GL032903.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • White, W. B., and R. L. Bernstein, 1979: Design of an Oceanographic network in the midlatitude North Pacific. J. Phys. Oceanogr., 9, 592606, doi:10.1175/1520-0485(1979)009<0592:DOAONI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 596 127 8
PDF Downloads 498 92 5