Novel Methods for Optically Measuring Whitecaps under Natural Wave-Breaking Conditions in the Southern Ocean

Kaylan Randolph Department of Marine Sciences, University of Connecticut, Groton, Connecticut

Search for other papers by Kaylan Randolph in
Current site
Google Scholar
PubMed
Close
,
Heidi M. Dierssen Department of Marine Sciences, University of Connecticut, Groton, Connecticut

Search for other papers by Heidi M. Dierssen in
Current site
Google Scholar
PubMed
Close
,
Alejandro Cifuentes-Lorenzen Department of Marine Sciences, University of Connecticut, Groton, Connecticut

Search for other papers by Alejandro Cifuentes-Lorenzen in
Current site
Google Scholar
PubMed
Close
,
William M. Balch Bigelow Laboratory for Ocean Sciences, East Boothbay, Maine

Search for other papers by William M. Balch in
Current site
Google Scholar
PubMed
Close
,
Edward C. Monahan Department of Marine Sciences, University of Connecticut, Groton, Connecticut

Search for other papers by Edward C. Monahan in
Current site
Google Scholar
PubMed
Close
,
Christopher J. Zappa Lamont-Doherty Earth Observatory, Columbia University, Palisades, New York

Search for other papers by Christopher J. Zappa in
Current site
Google Scholar
PubMed
Close
,
Dave T. Drapeau Bigelow Laboratory for Ocean Sciences, East Boothbay, Maine

Search for other papers by Dave T. Drapeau in
Current site
Google Scholar
PubMed
Close
, and
Bruce Bowler Bigelow Laboratory for Ocean Sciences, East Boothbay, Maine

Search for other papers by Bruce Bowler in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Traditional methods for measuring whitecap coverage using digital video systems mounted to measure a large footprint can miss features that do not produce a high enough contrast to the background. Here, a method for accurately measuring the fractional coverage, intensity, and decay time of whitecaps using above-water radiometry is presented. The methodology was developed using data collected in the Southern Ocean under a wide range of wind and wave conditions. Whitecap quantities were obtained by employing a magnitude threshold based on the interquartile range of the radiance or reflectance signal from a single channel. Breaking intensity and decay time were produced from the integration of and the exponential fit to radiance or reflectance over the lifetime of the whitecap. When using the lowest magnitude threshold possible, radiometric fractional whitecap coverage retrievals were consistently higher than fractional coverage from high-resolution digital images, perhaps because the radiometer captures more of the decaying bubble plume area that is difficult to detect with photography. Radiometrically obtained whitecap measurements are presented in the context of concurrently measured meteorological (e.g., wind speed) and oceanographic (e.g., wave) data. The optimal fit of the radiometrically estimated whitecap coverage to the instantaneous wind speed, determined using robust linear least squares, showed a near-cubic dependence. Increasing the magnitude threshold for whitecap detection from 2 to 4 times the interquartile range produced a wind speed–whitecap relationship most comparable to the concurrently collected fractional coverage from digital imagery and previously published wind speed–whitecap parameterizations.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author e-mail: Kaylan Randolph; kaylan.randolph@uconn.edu

Abstract

Traditional methods for measuring whitecap coverage using digital video systems mounted to measure a large footprint can miss features that do not produce a high enough contrast to the background. Here, a method for accurately measuring the fractional coverage, intensity, and decay time of whitecaps using above-water radiometry is presented. The methodology was developed using data collected in the Southern Ocean under a wide range of wind and wave conditions. Whitecap quantities were obtained by employing a magnitude threshold based on the interquartile range of the radiance or reflectance signal from a single channel. Breaking intensity and decay time were produced from the integration of and the exponential fit to radiance or reflectance over the lifetime of the whitecap. When using the lowest magnitude threshold possible, radiometric fractional whitecap coverage retrievals were consistently higher than fractional coverage from high-resolution digital images, perhaps because the radiometer captures more of the decaying bubble plume area that is difficult to detect with photography. Radiometrically obtained whitecap measurements are presented in the context of concurrently measured meteorological (e.g., wind speed) and oceanographic (e.g., wave) data. The optimal fit of the radiometrically estimated whitecap coverage to the instantaneous wind speed, determined using robust linear least squares, showed a near-cubic dependence. Increasing the magnitude threshold for whitecap detection from 2 to 4 times the interquartile range produced a wind speed–whitecap relationship most comparable to the concurrently collected fractional coverage from digital imagery and previously published wind speed–whitecap parameterizations.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author e-mail: Kaylan Randolph; kaylan.randolph@uconn.edu
Save
  • Andreas, E. L, J. B. Edson, E. C. Monahan, M. P. Rouault, and S. D. Smith, 1995: The spray contribution to net evaporation from the sea: A review of recent progress. Bound.-Layer Meteor., 72, 352, doi:10.1007/BF00712389.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Anguelova, M. D., and F. Webster, 2006: Whitecap coverage from satellite measurements: A first step toward modeling the variability of oceanic whitecaps. J. Geophys. Res., 111, C03017, doi:10.1029/2005JC003158.

    • Search Google Scholar
    • Export Citation
  • Asher, W. E., and R. Wanninkhof, 1998: The effect of bubble‐mediated gas transfer on purposeful dual‐gaseous tracer experiments. J. Geophys. Res., 103, 10 55510 560, doi:10.1029/98JC00245.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Asher, W. E., L. M. Karle, B. J. Higgins, P. J. Farley, I. S. Leifer, and E. C. Monahan, 1995: The effect of bubble plume size on the parameterization of air-seawater gas transfer velocities. Air-Water Gas Transfer: Selected Papers from the Third International Symposium on Air-Water Gas Transfer, B. Jähne and E. C. Monahan, Eds., AEON-Verlag and Studio, 227–238.

  • Asher, W. E., J. Edson, W. McGillis, R. Wanninkhof, D. T. Ho, and T. Litchendorf, 2002: Fractional area whitecap coverage and air-sea gas transfer velocities measured during GasEx-98. Gas Transfer at Water Surfaces, Geophys. Monogr., Vol. 127, Amer. Geophys. Union, 199–203.

    • Crossref
    • Export Citation
  • Balch, W. M., D. T. Drapeau, B. C. Bowler, E. Lyczskowski, E. S. Booth, and D. Alley, 2011: The contribution of coccolithophores to the optical and inorganic carbon budgets during the Southern Ocean Gas Exchange Experiment: New evidence in support of the “Great Calcite Belt” hypothesis. J. Geophys. Res., 116, C00F06, doi:10.1029/2011JC006941.

    • Search Google Scholar
    • Export Citation
  • Bondur, V. G., and E. A. Sharkov, 1982: Statistical properties of whitecaps on a rough sea. Oceanology, 22, 274279.

  • Bortkovskii, R. S., 1987: Air-Sea Exchange of Heat and Moisture during Storms. Atmospheric Sciences Library, Vol. 10, Kluwer, 194 pp., doi:10.1007/978-94-017-0687-2.

    • Crossref
    • Export Citation
  • Bortkovskii, R. S., and V. Novak, 1993: Statistical dependencies of sea state characteristics on water temperature and wind-wave age. J. Mar. Syst., 4, 161169, doi:10.1016/0924-7963(93)90006-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bouguet, J.-Y., 2004: Camera calibration toolbox for MATLAB. Microprocessor Research Laboratory, Intel Corp. [Available online at http://www.vision.caltech.edu/bouguetj/calib_doc/.]

  • Briggs, N., M. J. Perry, I. Cetinić, C. Lee, E. D’Asaro, A. M. Gray, and E. Rehm, 2011: High-resolution observations of aggregate flux during a sub-polar North Atlantic spring bloom. Deep-Sea Res. I, 58, 10311039, doi:10.1016/j.dsr.2011.07.007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Callaghan, A. H., and M. White, 2009: Automated processing of sea surface images for the determination of whitecap coverage. J. Atmos. Oceanic Technol., 26, 383394, doi:10.1175/2008JTECHO634.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Callaghan, A. H., G. B. Deane, M. D. Stokes, and B. Ward, 2012: Observed variation in the decay time of oceanic whitecap foam. J. Geophys. Res., 117, C09015, doi:10.1029/2012JC008147.

    • Search Google Scholar
    • Export Citation
  • Cifuentes-Lorenzen, A., J. B. Edson, C. J. Zappa, and L. Bariteau, 2013: A multisensor comparison of ocean wave frequency spectra from a research vessel during the Southern Ocean Gas Exchange Experiment. J. Atmos. Oceanic Technol., 30, 29072925, doi:10.1175/JTECH-D-12-00181.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Donelan, M., M. S. Longuet-Higgins, and J. S. Turner, 1972: Periodicity in whitecaps. Nature, 239, 449451, doi:10.1038/239449a0.

  • Drennan, W. M., M. Donelan, E. Terray, and K. Katsaros, 1996: Oceanic turbulence dissipation measurements in SWADE. J. Phys. Oceanogr., 26, 808815, doi:10.1175/1520-0485(1996)026<0808:OTDMIS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Edson, J. B., and C. Fairall, 1998: Similarity relationships in the marine atmospheric surface layer for terms in the TKE and scalar variance budgets. J. Atmos. Sci., 55, 23112328, doi:10.1175/1520-0469(1998)055<2311:SRITMA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Edson, J. B., and Coauthors, 2011: Direct covariance measurement of CO2 gas transfer velocity during the 2008 Southern Ocean Gas Exchange Experiment: Wind speed dependency. J. Geophys. Res., 116, C00F10, doi:10.1029/2011JC007022.

    • Search Google Scholar
    • Export Citation
  • Fairall, C. W., E. F. Bradley, J. E. Hare, A. A. Grachev, and J. B. Edson, 2003: Bulk parameterization of air–sea fluxes: Updates and verification for the COARE algorithm. J. Climate, 16, 571591, doi:10.1175/1520-0442(2003)016<0571:BPOASF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Frouin, R., M. Schwindling, and P.-Y. Deschamps, 1996: Spectral reflectance of sea foam in the visible and near-infrared: In situ measurements and remote sensing implications. J. Geophys. Res., 101, 14 36114 371, doi:10.1029/96JC00629.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gemmrich, J. R., and D. M. Farmer, 1999: Observations of the scale and occurrence of breaking surface waves. J. Phys. Oceanogr., 29, 25952606, doi:10.1175/1520-0485(1999)029<2595:OOTSAO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gemmrich, J. R., M. L. Banner, and C. Garrett, 2008: Spectrally resolved energy dissipation rate and momentum flux of breaking waves. J. Phys. Oceanogr., 38, 12961312, doi:10.1175/2007JPO3762.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Goddijn-Murphy, L., D. K. Woolf, and A. H. Callaghan, 2011: Parameterizations and algorithms for oceanic whitecap coverage. J. Phys. Oceanogr., 41, 742756, doi:10.1175/2010JPO4533.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hanson, J. L., and O. M. Phillips, 1999: Wind sea growth and dissipation in the open ocean. J. Phys. Oceanogr., 29, 16331648, doi:10.1175/1520-0485(1999)029<1633:WSGADI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ho, D. T., and Coauthors, 2011: Southern Ocean Gas Exchange Experiment: Setting the stage. J. Geophys. Res., 116, C00F08, doi:10.1029/2010JC006852.

    • Search Google Scholar
    • Export Citation
  • Kleiss, J. M., and W. K. Melville, 2011: The analysis of sea surface imagery for whitecap kinematics. J. Atmos. Oceanic Technol., 28, 219243, doi:10.1175/2010JTECHO744.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Koepke, P., 1984: Effective reflectance of oceanic whitecaps. Appl. Opt., 23, 18161824, doi:10.1364/AO.23.001816.

  • Kudryavtsev, V., and V. Makin, 2002: Coupled dynamics of short waves and the airflow over long surface waves. J. Geophys. Res., 107, 3209, doi:10.1029/2001JC001251.

    • Search Google Scholar
    • Export Citation
  • Lemire, D., 2006: Streaming maximum-minimum filter using no more than three comparisons per element. Nord. J. Comput., 13, 328339.

  • Liss, P. S., and L. Merlivat, 1986: Air-sea gas exchange rates: Introduction and synthesis. The Role of Air-Sea Exchange in Geochemical Cycling, P. Buat-Ménard, Ed., NATO Science Series C, Vol. 185, D. Reidel, 113–129.

    • Crossref
    • Export Citation
  • Mobley, C. D., 1999: Estimation of the remote-sensing reflectance from above-surface measurements. Appl. Opt., 38, 74427455, doi:10.1364/AO.38.007442.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Monahan, E. C., 1989: From the laboratory tank to the global ocean. The Climate and Health Implications of Bubble-Mediated Sea-Air Exchange, Connecticut Sea Grant College Program, 43–63.

  • Monahan, E. C., 1993: Occurrence and evolution of acoustically relevant sub-surface bubble plumes and their associated, remotely monitorable, surface whitecaps. Natural Physical Sources of Underwater Sound: Sea Surface Sound (2), B. R. Kerman, Ed., Springer, 503–517.

    • Crossref
    • Export Citation
  • Monahan, E. C., 2002: Oceanic whitecaps: Sea surface features detectable via satellite that are indicators of the magnitude of the air-sea gas transfer coefficient. J. Earth Syst. Sci., 111, 315319, doi:10.1007/BF02701977.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Monahan, E. C., and C. R. Zietlow, 1969: Laboratory comparisons of fresh-water and salt-water whitecaps. J. Geophys. Res., 74, 69616966, doi:10.1029/JC074i028p06961.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Monahan, E. C., and I. O. Muircheartaigh, 1980: Optimal power-law description of oceanic whitecap coverage dependence on wind speed. J. Phys. Oceanogr., 10, 20942099, doi:10.1175/1520-0485(1980)010<2094:OPLDOO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Monahan, E. C., and M. C. Spillane, 1984: The role of oceanic whitecaps in air sea gas exchange. Gas Transfer at Water Surfaces, W. Brutsaert and G. H. Jirka, Eds., Water Science and Technology Library, Vol. 2, D. Reidel, 495–504.

    • Crossref
    • Export Citation
  • Monahan, E. C., and C. F. Monahan, 1986: The influence of fetch on whitecap coverage as deduced from the Alte Weser Light-station observer’s log. Oceanic Whitecaps: And Their Role in Air–Sea Exchange Processes, E. Monahan and G. M. Niocaill, Eds., Oceanographic Sciences Library, Vol. 2, D. Reidel, 275–277.

    • Crossref
    • Export Citation
  • Monahan, E. C., and M. Lu, 1990: Acoustically relevant bubble assemblages and their dependence on meteorological parameters. IEEE J. Oceanic Eng., 15, 340349, doi:10.1109/48.103530.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Monahan, E., K. Davidson, and D. Spiel, 1982: Whitecap aerosol productivity deduced from simulation tank measurements. J. Geophys. Res., 87, 88988904, doi:10.1029/JC087iC11p08898.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Monahan, E., M. C. Spillane, P. A. Bowyer, M. R. Higgins, and P. J. Stabeno, 1984: Whitecaps and the marine atmosphere. University College Tech. Rep. 7, 103 pp. [Available online at https://aran.library.nuigalway.ie/handle/10379/4263.]

  • Monahan, E., D. E. Spiel, and K. L. Davidson, 1986: A model of marine aerosol generation via whitecaps and wave disruption. Oceanic Whitecaps: And Their Role in Air–Sea Exchange Processes, E. Monahan and G. M. Niocaill, Eds., Oceanographic Sciences Library, Vol. 2, D. Reidel, 167–174.

    • Crossref
    • Export Citation
  • Moore, K. D., K. J. Voss, and H. R. Gordon, 1998: Spectral reflectance of whitecaps: Instrumentation, calibration, and performance in coastal waters. J. Atmos. Oceanic Technol., 15, 496509, doi:10.1175/1520-0426(1998)015<0496:SROWIC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moore, K. D., K. J. Voss, and H. R. Gordon, 2000: Spectral reflectance of whitecaps: Their contribution to water-leaving radiance. J. Geophys. Res., 105, 64936499, doi:10.1029/1999JC900334.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mueller, J. L., and Coauthors, 2003: Radiometric measurements and data analysis protocols. Vol. III, Ocean optics protocols for satellite ocean color sensor validation, revision 4, J. L. Mueller, G. S. Fargion, and C. R. McClain, Eds., NASA Tech. Memo. NASA/TM-2003-21621/Rev-VolIII, 78 pp. [Available online at https://oceancolor.gsfc.nasa.gov/DOCS/Protocols_Ver4_VolIII.pdf.]

  • Nordberg, W., J. Conaway, D. B. Ross, and T. Wilheit, 1971: Measurements of microwave emission from a foam-covered, wind-driven sea. J. Atmos. Sci., 28, 429435, doi:10.1175/1520-0469(1971)028<0429:MOMEFA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Randolph, K. L., 2015: Optical measurements of whitecaps and bubbles during large scale wave breaking in the Southern Ocean. Ph.D. dissertation, University of Connecticut, 146 pp.

  • Randolph, K. L, H. M. Dierssen, M. Twardowski, A. Cifuentes-Lorenzen, and C. J. Zappa, 2014: Optical measurements of small deeply penetrating bubble populations generated by breaking waves in the Southern Ocean. J. Geophys. Res. Oceans, 119, 757776, doi:10.1002/2013JC009227.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ross, D. B., and V. Cardone, 1974: Observations of oceanic whitecaps and their relation to remote measurements of surface wind speed. J. Geophys. Res., 79, 444452, doi:10.1029/JC079i003p00444.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Scanlon, B., and B. Ward, 2016: The influence of environmental parameters on active and maturing oceanic whitecaps. J. Geophys. Res. Oceans, 121, 33253336, doi:10.1002/2015JC011230.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Scanlon, B., Ø. Breivik, J.-R. Bidlot, P. A. Janssen, A. H. Callaghan, and B. Ward, 2016: Modeling whitecap fraction with a wave model. J. Phys. Oceanogr., 46, 887894, doi:10.1175/JPO-D-15-0158.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stabeno, P. J., and E. C. Monahan, 1986: The influence of whitecaps on the albedo of the sea surface. Oceanic Whitecaps: Their Role in Air-Sea Exchange Processes, E. C. Monahan and G. M. Niocaill, Eds., Oceanographic Sciences Library, Vol. 2, D. Reidel, 261–266.

    • Crossref
    • Export Citation
  • Stramska, M., and T. Petelski, 2003: Observations of oceanic whitecaps in the north polar waters of the Atlantic. J. Geophys. Res., 108, 3086, doi:10.1029/2002JC001321.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stramski, D., and J. Tegowski, 2001: Effects of intermittent entrainment of air bubbles by breaking wind waves on ocean reflectance and underwater light field. J. Geophys. Res., 106, 31 34531 360, doi:10.1029/2000JC000461.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sugihara, Y., H. Tsumori, T. Ohga, H. Yoshioka, and S. Serizawa, 2007: Variation of whitecap coverage with wave-field conditions. J. Mar. Syst., 66, 4760, doi:10.1016/j.jmarsys.2006.01.014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sutherland, P., and W. K. Melville, 2015: Field measurements of surface and near-surface turbulence in the presence of breaking waves. J. Phys. Oceanogr., 45, 943965, doi:10.1175/JPO-D-14-0133.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Terray, E., M. Donelan, Y. Agrawal, W. Drennan, K. Kahma, A. Williams, P. Hwang, and S. Kitaigorodskii, 1996: Estimates of kinetic energy dissipation under breaking waves. J. Phys. Oceanogr., 26, 792807, doi:10.1175/1520-0485(1996)026<0792:EOKEDU>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Terrill, E. J., W. K. Melville, and D. Stramski, 2001: Bubble entrainment by breaking waves and their influence on optical scattering in the upper ocean. J. Geophys. Res., 106, 16 81516 823, doi:10.1029/2000JC000496.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thorpe, S. A., 1982: On the clouds of bubbles formed by breaking wind-waves in deep water, and their role in air–sea gas transfer. Philos. Trans. Roy. Soc. London, 304A, 155210, doi:10.1098/rsta.1982.0011.

    • Search Google Scholar
    • Export Citation
  • Villarino, R., A. Camps, M. Vall-Ilossera, J. Miranda, and J. Arenas, 2003: Sea foam effects on the brightness temperature at L-band. IGARSS 2003: 2003 IEEE International Geoscience and Remote Sensing Symposium; Proceedings, Vol. 5, IEEE, 3076–3078, doi:10.1109/IGARSS.2003.1294688.

    • Crossref
    • Export Citation
  • Wang, Q., E. C. Monahan, W. E. Asher, and P. M. Smith, 1995: Correlations of whitecap coverage and gas transfer velocity with microwave brightness temperature for plunging and spilling breaking waves. Air‐Water Gas Transfer: Selected Papers from the Third International Symposium on Air-Water Gas Transfer, B. Jähne and E. C. Monahan, Eds., AEON-Verlag and Studio, 217–225.

  • Whitlock, C. H., D. S. Bartlett, and E. A. Gurganus, 1982: Sea foam reflectance and influence on optimum wavelength for remote sensing of ocean aerosols. Geophys. Res. Lett., 9, 719722, doi:10.1029/GL009i006p00719.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Woolf, D. K., 2005: Parametrization of gas transfer velocities and sea-state-dependent wave breaking. Tellus, 57B, 8794, doi:10.1111/j.1600-0889.2005.00139.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Woolf, D. K., and S. A. Thorpe, 1991: Bubbles and the air-sea exchange of gases in near-saturation conditions. J. Mar. Res., 49, 435466, doi:10.1357/002224091784995765.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, J., 1983: Sea-surface drift currents induced by wind and waves. J. Phys. Oceanogr., 13, 14411451, doi:10.1175/1520-0485(1983)013<1441:SSDCIB>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zappa, C. J., M. L. Banner, H. Schultz, J. R. Gemmrich, R. P. Morison, D. A. LeBel, and T. Dickey, 2012: An overview of sea state conditions and air‐sea fluxes during RaDyO. J. Geophys. Res., 117, C00H19, doi:10.1029/2011JC007336.

    • Search Google Scholar
    • Export Citation
  • Zhang, X., M. Lewis, M. Lee, B. Johnson, and G. Korotaev, 2002: The volume scattering function of natural bubble populations. Limnol. Oceanogr., 47, 12731282, doi:10.4319/lo.2002.47.5.1273.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhao, D., and Y. Toba, 2001: Dependence of whitecap coverage on wind and wind-wave properties. J. Oceanogr., 57, 603616, doi:10.1023/A:1021215904955.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zibordi, G., and C. J. Donlon, 2014: In situ measurement strategies. Optical Radiometry for Ocean Climate Measurements, G. Zibordi, C. J. Donlon, and A. C. Parr, Eds., Experimental Methods in the Physical Sciences, Vol. 47, Elsevier, 527–529.

    • Crossref
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 4760 541 7
PDF Downloads 263 50 5