Visual Hull Method for Realistic 3D Particle Shape Reconstruction Based on High-Resolution Photographs of Snowflakes in Free Fall from Multiple Views

C. Kleinkort Department of Electrical and Computer Engineering, Colorado State University, Fort Collins, Colorado

Search for other papers by C. Kleinkort in
Current site
Google Scholar
PubMed
Close
,
G.-J. Huang Department of Electrical and Computer Engineering, Colorado State University, Fort Collins, Colorado

Search for other papers by G.-J. Huang in
Current site
Google Scholar
PubMed
Close
,
V. N. Bringi Department of Electrical and Computer Engineering, Colorado State University, Fort Collins, Colorado

Search for other papers by V. N. Bringi in
Current site
Google Scholar
PubMed
Close
, and
B. M. Notaroš Department of Electrical and Computer Engineering, Colorado State University, Fort Collins, Colorado

Search for other papers by B. M. Notaroš in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

A visual hull method for reconstruction of realistic 3D shapes of snowflakes and other hydrometeors based on high-resolution photographs of particles in free fall from multiple views captured by a multiangle snowflake camera (MASC), or another similar instrument, is proposed and presented. The visual hull of an object is the maximal domain that gives the same silhouettes as the object from a certain set of viewpoints. From the measured fall speed and the particle shape reconstruction, the particle density and dielectric constant are estimated. This is the first time 3D shape reconstructions based on multiple high-resolution photographs of real (measured) snowflakes are performed. The results are clearly much better than any similar data in the literature. They demonstrate—in experiments involved in real snowstorm observations and those with simulated and fake 3D-printed snowflakes—sufficient silhouette information from the five cameras of the expanded MASC system and excellent performance of the implemented mechanical calibration and software self-calibration of the system. In addition to enabling realistic “particle by particle” computations of polarimetric radar measurables for winter precipitation, the visual hull 3D shape reconstructions of hydrometeors can be used for microphysical characteristics analyses, hydrometeor classification, and improvement of radar-based estimations of liquid-equivalent snow rates.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author e-mail: Branislav M. Notaroš, notaros@colostate.edu

Abstract

A visual hull method for reconstruction of realistic 3D shapes of snowflakes and other hydrometeors based on high-resolution photographs of particles in free fall from multiple views captured by a multiangle snowflake camera (MASC), or another similar instrument, is proposed and presented. The visual hull of an object is the maximal domain that gives the same silhouettes as the object from a certain set of viewpoints. From the measured fall speed and the particle shape reconstruction, the particle density and dielectric constant are estimated. This is the first time 3D shape reconstructions based on multiple high-resolution photographs of real (measured) snowflakes are performed. The results are clearly much better than any similar data in the literature. They demonstrate—in experiments involved in real snowstorm observations and those with simulated and fake 3D-printed snowflakes—sufficient silhouette information from the five cameras of the expanded MASC system and excellent performance of the implemented mechanical calibration and software self-calibration of the system. In addition to enabling realistic “particle by particle” computations of polarimetric radar measurables for winter precipitation, the visual hull 3D shape reconstructions of hydrometeors can be used for microphysical characteristics analyses, hydrometeor classification, and improvement of radar-based estimations of liquid-equivalent snow rates.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author e-mail: Branislav M. Notaroš, notaros@colostate.edu
Save
  • Andrić, J., M. R. Kumjian, D. S. Zrnić, J. M. Straka, and V. M. Melnikov, 2012: Polarimetric signatures above the melting layer in winter storms: An observational and modeling study. J. Appl. Meteor. Climatol., 52, 682700, doi:10.1175/JAMC-D-12-028.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bader, M., 2016: MB-Ruler—The triangular screen ruler 5.3. [Available online at http://www.markus-bader.de/MB-Ruler/index.php.]

  • Barthazy, E., S. Göke, R. Schefold, and D. Högl, 2004: An optical array instrument for shape and fall velocity measurements of hydrometeors. J. Atmos. Oceanic Technol., 21, 14001416, doi:10.1175/1520-0426(2004)021<1400:AOAIFS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Baumgart, B. G., 1974: Geometric modeling for computer vision. Ph.D. thesis, Stanford University, 145 pp.

  • Bloomenthal, J., 1994: An implicit surface polygonizer. Graphics Gems IV, P. Heckbert, Ed., Academic Press, 324349.

    • Crossref
    • Export Citation
  • Böhm, H. P., 1989: A general equation for the terminal fall speed of solid hydrometeors. J. Atmos. Sci., 46, 24192427, doi:10.1175/1520-0469(1989)046<2419:AGEFTT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bringi, V. N., B. Notaroš, C. Kleinkort, G.-J. Huang, M. Thurai, and P. Kennedy, 2015: Comprehensive analysis of an unusual winter graupel shower event recorded by an S-band polarimetric radar and two optical imaging surface instruments. 37th Conf. on Radar Meteorology, Norman, OK, Amer. Meteor. Soc., 1A.4. [Available online at https://ams.confex.com/ams/37RADAR/webprogram/Paper276208.html.]

  • Chobanyan, E., N. J. Šekeljić, A. B. Manić, M. M. Ilić, V. N. Bringi, and B. M. Notaroš, 2015: Efficient and accurate computational electromagnetics approach to precipitation particle scattering analysis based on higher-order method of moments integral equation modeling. J. Atmos. Oceanic Technol., 32, 17451758, doi:10.1175/JTECH-D-15-0037.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Djordjević, M., and B. M. Notaroš, 2004: Double higher order method of moments for surface integral equation modeling of metallic and dielectric antennas and scatterers. IEEE Trans. Antennas Propag., 52, 21182129, doi:10.1109/TAP.2004.833175.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Du, J., J. Shi, and H. Rott, 2010: Comparison between a multi-scattering and multi-layer snow scattering model and its parameterized snow backscattering model. Remote Sens. Environ., 114, 10891098, doi:10.1016/j.rse.2009.12.020.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Evans, K. F., and G. Stephens, 1995: Microwave radiative transfer through clouds composed of realistically shaped ice crystals. Part I: Single scattering properties. J. Atmos. Sci., 52, 20412057, doi:10.1175/1520-0469(1995)052<2041:MRTTCC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fischler, M. A., and R. C. Bolles, 1981: Random sample consensus: A paradigm for model fitting with applications to image analysis and automated cartography. Commun. ACM, 24, 381395, doi:10.1145/358669.358692.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Forbes, K., 2007: Calibration, recognition, and shape from silhouettes of stones. Ph.D. thesis, University of Cape Town, 239 pp.

  • Forbes, K., 2012: Visual hull mesh code. [Available online at http://www.dip.ee.uct.ac.za/~kforbes/DoubleMirror/DoubleMirror.html.]

  • Garrett, T. J., C. Fallgatter, K. Shkurko, and D. Howlett, 2012: Fall speed measurement and high-resolution multi-angle photography of hydrometeors in free fall. Atmos. Meas. Tech., 5, 26252633, doi:10.5194/amt-5-2625-2012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grecu, M., and W. Olson, 2008: Precipitating snow retrievals from combined airborne cloud radar and millimeter-wave radiometer observations. J. Appl. Meteor. Climatol., 47, 16341650, doi:10.1175/2007JAMC1728.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hartley, R., and A. Zisserman, 2000: Multiple View Geometry in Computer Vision. Cambridge University Press, 607 pp.

  • Hong, G., 2007a: Parameterization of scattering and absorption properties of nonspherical ice crystals at microwave frequencies. J. Geophys. Res., 112, D11208, doi:10.1029/2006JD008364.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hong, G., 2007b: Radar backscattering properties of nonspherical ice crystals at 94 GHz. J. Geophys. Res., 112, D22203, doi:10.1029/2007JD008839.

  • Huang, G., V. N. Bringi, D. Moisseev, W. A. Petersen, L. Bliven, and D. Hudak, 2015: Use of 2D-video disdrometer to derive mean density–size and Ze–SR relations: Four snow cases from the light precipitation validation experiment. Atmos. Res., 153, 3448, doi:10.1016/j.atmosres.2014.07.013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ishimoto, H., 2008: Radar backscattering computations for fractal-shaped snowflakes. J. Meteor. Soc. Japan, 86, 459469, doi:10.2151/jmsj.86.459.

  • Kennedy, P. C., and S. A. Rutledge, 2011: S-band dual-polarization radar observations of winter storms. J. Appl. Meteor. Climatol., 50, 844858, doi:10.1175/2010JAMC2558.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kennedy, P. C., and Coauthors, 2015: Preliminary results from the Multi-Angle Snowflake Camera and Radar (MASCRAD) project. 37th Conf. on Radar Meteorology, Norman, OK, Amer. Meteor. Soc., 1A.1. [Available online at https://ams.confex.com/ams/37RADAR/webprogram/Paper275327.html.]

  • Kim, M.-J., 2006: Single scattering parameters of randomly oriented snow particles at microwave frequencies. J. Geophys. Res., 111, D14201, doi:10.1029/2005JD006892.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kim, M.-J., M. S. Kulie, C. O’Dell, and R. Bennartz, 2007: Scattering of ice particles at microwave frequencies: A physically based parameterization. J. Appl. Meteor. Climatol., 46, 615633, doi:10.1175/JAM2483.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kleinkort, C., G.-J. Huang, E. Chobanyan, A. Manic, M. Ilić, A. Pezeshki, V. N. Bringi, and B. Notaroš, 2015a: Visual hull method based shape reconstruction of snowflakes from MASC photographs. 2015 IEEE Antennas and Propagation Society International Symposium: Proceedings, IEEE, 1122–1123, doi:10.1109/APS.2015.7304949.

    • Crossref
    • Export Citation
  • Kleinkort, C., and Coauthors, 2015b: 3D shape reconstruction of snowflakes from multiple images, meshing, dielectric constant estimation, scattering analysis, and validation by radar measurements. 37th Conf. on Radar Meteorology, Norman, OK, Amer. Meteor. Soc., 1A.3. [Available online at https://ams.confex.com/ams/37RADAR/webprogram/Paper276189.html.]

  • Kneifel, S., U. Löhnert, A. Battaglia, S. Crewell, and D. Siebler, 2010: Snow scattering signals in ground-based passive microwave radiometer measurements. J. Geophys. Res., 115, D16214, doi:10.1029/2010JD013856.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kuo, K., and Coauthors, 2016: The microwave radiative properties of falling snow derived from nonspherical ice particle models. Part I: An extensive database of simulated pristine crystals and aggregate particles, and their scattering properties. J. Appl. Meteor. Climatol., 55, 691708, doi:10.1175/JAMC-D-15-0130.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Laurentini, A., 1994: The visual hull concept for silhouette-based image understanding. IEEE Trans. Pattern Anal. Mach. Intell., 16, 150162, doi:10.1109/34.273735.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Laurentini, A., 1995: How far 3D shapes can be understood from 2D silhouettes. IEEE Trans. Pattern Anal. Mach. Intell., 17, 188195, doi:10.1109/34.368170.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Leinonen, J., and W. Szyrmer, 2015: Radar signatures of snowflake riming: A modeling study. Earth Space Sci., 2, 346358, doi:10.1002/2015EA000102.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Leinonen, J., D. Moisseev, and T. Nousiainen, 2013: Linking snowflake microstructure to multi-frequency radar observations. J. Geophys. Res. Atmos., 118, 32593270, doi:10.1002/jgrd.50163.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, G., 2004: Approximation of single scattering properties of ice and snow particles for high microwave frequencies. J. Atmos. Sci., 61, 24412456, doi:10.1175/1520-0469(2004)061<2441:AOSSPO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, G., 2008: A database of microwave single-scattering properties for nonspherical ice particles. Bull. Amer. Meteor. Soc., 89, 15631570, doi:10.1175/2008BAMS2486.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mason, B. J., 2010: The Physics of Clouds. 2nd ed. Oxford Classic Texts in the Physical Sciences, Oxford University Press, 688 pp.

  • Matrosov, S. Y., R. F. Reinking, R. A. Kropfli, B. E. Martner, and B. W. Bartram, 2001: On the use of radar depolarization ratios for estimating shapes of ice hydrometeors in winter clouds. J. Appl. Meteor., 40, 479490, doi:10.1175/1520-0450(2001)040<0479:OTUORD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Matrosov, S. Y., C. Campbell, D. Kingsmill, and E. Sukovich, 2009: Assessing snowfall rates from X-band radar reflectivity measurements. J. Atmos. Oceanic Technol., 26, 23242339, doi:10.1175/2009JTECHA1238.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Matusik, W., C. Buehler, R. Raskar, L. McMillan, and S. Gortler, 2000: Image-based visual hulls. SIGGRAPH’00: Proceedings of the 27th Annual Conference on Computer Graphics and Interactive Techniques, ACM Press, 369–374, doi:10.1145/344779.344951.

    • Crossref
    • Export Citation
  • Maxwell Garnett, J. C., 1904: Colors in metal glasses and in metallic films. Philos. Trans. Roy. Soc. London, A203, 385420, doi:10.1098/rsta.1904.0024.

    • Search Google Scholar
    • Export Citation
  • Newman, A. J., P. A. Kucera, and L. F. Bliven, 2009: Presenting the Snowflake Video Imager (SVI). J. Atmos. Oceanic Technol., 26, 167179, doi:10.1175/2008JTECHA1148.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Notaroš, B. M., and Coauthors, 2015a: Measurement and characterization of winter precipitation at MASCRAD snow field site. 2015 IEEE Antennas and Propagation Society International Symposium: Proceedings, IEEE, 979–980, doi:10.1109/APS.2015.7304877.

    • Crossref
    • Export Citation
  • Notaroš, B. M., V. N. Bringi, A. J. Newman, C. Kleinkort, G.-J. Huang, P. Kennedy, and M. Thurai, 2015b: Accurate characterization of winter precipitation using in-situ instrumentation, CSU-CHILL radar, and advanced scattering methods. 2015 Fall Meeting, San Francisco, CA, Amer. Geophys. Union, Abstract A11A-0010.

  • Notaroš, B. M., V. N. Bringi, E. Chobanyan, C. Kleinkort, S. B. Manić, N. J. Šekeljić, A. B. Manić, and M. M. Ilić, 2015c: Computation of particle scattering matrices and polarimetric radar variables for winter precipitation using T-matrix method, DDA method, and higher order MoM-SIE method. 37th Conf. on Radar Meteorology, Norman, OK, Amer. Meteor. Soc., 5B.1. [Available online at https://ams.confex.com/ams/37RADAR/webprogram/Paper276195.html.]

  • Notaroš, B. M., and Coauthors, 2016: Accurate characterization of winter precipitation using multi-angle snowflake camera, visual hull, advanced scattering methods and polarimetric radar. Atmosphere, 7, 81, doi:10.3390/atmos7060081.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Petty, G., and W. Huang, 2010: Microwave backscatter and extinction by soft ice spheres and complex snow aggregates. J. Atmos. Sci., 67, 769787, doi:10.1175/2009JAS3146.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pruppacher, H. R., and J. D. Klett, 2010: Microphysics of Clouds and Precipitation. 2nd ed. Atmospheric and Oceanographic Sciences Library, Vol. 18, Springer, 954 pp., doi:10.1007/978-0-306-48100-0.

    • Crossref
    • Export Citation
  • Reinking, R. F., S. Y. Matrosov, R. A. Kropfli, and B. W. Bartram, 2002: Evaluation of a 45° slant quasi-linear radar polarization state for distinguishing drizzle droplets, pristine ice crystals, and less regular ice particles. J. Atmos. Oceanic Technol., 19, 296321, doi:10.1175/1520-0426-19.3.296.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ryzhkov, A. V., D. S. Zrnić, and B. A. Gordon, 1998: Polarimetric method for ice water content determination. J. Appl. Meteor., 37, 125134, doi:10.1175/1520-0450(1998)037<0125:PMFIWC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sobel, I., 1970: Camera models and machine perception. Stanford Artificial Intelligence Laboratory Memo. AIM-21, Stanford University, 89 pp.

  • Straka, J., D. S. Zrnić, and A. V. Ryzhkov, 2000: Bulk hydrometeor classification and quantification using polarimetric radar data: Synthesis of relations. J. Appl. Meteor., 39, 13411372, doi:10.1175/1520-0450(2000)039<1341:BHCAQU>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sturm, P., and B. Triggs, 1996: A factorization based algorithm for multi-image projective structure and motion. Computer Vision—ECCV’96: Fourth European Conference on Computer Vision, B. Buxton and R. Cipolla, Eds., Lecture Notes in Computer Science, Vol. 1065, Springer, 709–720.

  • Svoboda, T., D. Martinec, and T. Pajdla, 2005: A convenient multi-camera self-calibration for virtual environments. Presence, 14, 407422, doi:10.1162/105474605774785325.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Teschl, F., W. L. Randeu, and M. Schönhuber, 2006: Modelling microwave scattering by solid precipitation particles. Proceedings of the European Conference on Antennas and Propagation: EuCAP 2006, H. Lacoste and L. Ouwehand, Eds., ESA SP-626, 362826.

  • Tyynelä, J., J. Leinonen, D. Moisseev, and T. Nousiainen, 2011: Radar backscattering from snowflakes: Comparison of fractal, aggregate, and soft spheroid models. J. Atmos. Oceanic Technol., 28, 13651372, doi:10.1175/JTECH-D-11-00004.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vivekanandan, J., V. N. Bringi, M. Hagen, and P. Meischner, 1994: Polarimetric radar studies of atmospheric ice particles. Trans. IEEE Geosci Remote Sens, 32, 110, doi:10.1109/36.285183.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Westbrook, C. D., 2008: The fall speeds of sub-100 μm ice crystals. Quart. J. Roy. Meteor. Soc., 134, 12431251, doi:10.1002/qj.290.

  • Westbrook, C. D., R. C. Ball, and P. R. Field, 2006: Radar scattering by aggregate snowflakes. Quart. J. Roy. Meteor. Soc., 132, 897914, doi:10.1256/qj.05.82.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, P., H. Wei, H.-L. Huang, B. A. Baum, Y. X. Hu, G. W. Kattawar, M. I. Mishchenko, and Q. Fu, 2005: Scattering and absorption property database for nonspherical ice particles in the near-through far-infrared spectral region. Appl. Opt., 44, 55125523, doi:10.1364/AO.44.005512.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, P., L. Bi, B. A. Baum, K. Liou, G. W. Kattawar, M. I. Mishchenko, and B. Cole, 2013: Spectrally consistent scattering, absorption, and polarization properties of atmospheric ice crystals at wavelengths from 0.2 to 100 μm. J. Atmos. Sci., 70, 330347, doi:10.1175/JAS-D-12-039.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, G., S. Luchs, A. Ryzhkov, M. Xue, L. Ryzhkova, and Q. Cao, 2011: Winter precipitation microphysics characterized by polarimetric radar and video disdrometer observations in central Oklahoma. J. Appl. Meteor. Climatol., 50, 15581570, doi:10.1175/2011JAMC2343.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 804 218 17
PDF Downloads 554 121 9