Parameters of Cloud Ice Particles Retrieved from Radar Data

Valery Melnikov Cooperative Institute for Mesoscale Meteorological Studies, University of Oklahoma, and NOAA/OAR/National Severe Storms Laboratory, Norman, Oklahoma

Search for other papers by Valery Melnikov in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The mean axis ratio (length/width) and the degree of orientation of cloud ice particles are retrieved from radar differential reflectivity (ZDR) and the copolar correlation coefficient (ρhv) measured with the S-band WSR-88D radar. Hardware differential phases and amplifications in the polarimetric channels affect measured ZDR and ρhv and are taken into consideration in the retrieval procedure. The retrieval is performed for particles in shapes of hexagonal prisms, which are closer to shapes of real cloud particles than frequently used spheroids. The median retrieved axis ratio for prisms is larger than that for spheroids. The statistical 1σ retrieval errors caused by fluctuations of radar returns are about 40% in areas of signal-to-noise ratios stronger than 10 dB. The values of the degree of orientation lie in an interval from 2° to 23°, which points to significant perturbations in the orientations of ice particles most likely caused by the wind field.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author e-mail: Valery Melnikov, valery.melnikov@noaa.gov

Abstract

The mean axis ratio (length/width) and the degree of orientation of cloud ice particles are retrieved from radar differential reflectivity (ZDR) and the copolar correlation coefficient (ρhv) measured with the S-band WSR-88D radar. Hardware differential phases and amplifications in the polarimetric channels affect measured ZDR and ρhv and are taken into consideration in the retrieval procedure. The retrieval is performed for particles in shapes of hexagonal prisms, which are closer to shapes of real cloud particles than frequently used spheroids. The median retrieved axis ratio for prisms is larger than that for spheroids. The statistical 1σ retrieval errors caused by fluctuations of radar returns are about 40% in areas of signal-to-noise ratios stronger than 10 dB. The values of the degree of orientation lie in an interval from 2° to 23°, which points to significant perturbations in the orientations of ice particles most likely caused by the wind field.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author e-mail: Valery Melnikov, valery.melnikov@noaa.gov
Save
  • Bailey, M. P., and J. Hallet, 2009: A comprehensive habit diagram for atmospheric ice crystals: Confirmation from the Laboratory, AIRS II, and other field studies. J. Atmos. Sci., 66, 28882899, doi:10.1175/2009JAS2883.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bringi, V. N., and V. Chandrasekar, 2001: Polarimetric Doppler Weather Radar: Principles and Applications. Cambridge University Press, 636 pp.

    • Crossref
    • Export Citation
  • Cunningham, J. G., W. D. Zittel, R. R. Lee, R. L. Ice, and N. P. Hoban, 2013: Methods for identifying systematic differential reflectivity (Zdr) biases on the operational WSR-88D network. 36th Conf. on Radar Meteorology, Amer. Meteor. Soc., 9B.5. [Available online at https://ams.confex.com/ams/36Radar/webprogram/Paper228792.html.]

  • Doviak, R. J., and D. S. Zrnić, 2006: Doppler Radar and Weather Observations. 2nd ed. Academic Press, 562 pp.

  • Garrett, T. J., S. E. Yuter, C. Fallgatter, K. Shkurko, S. R. Rhodes, and J. L. Endries, 2015: Orientations and aspect ratios of falling snow. Geophys. Res. Lett., 42, 46174622, doi:10.1002/2015GL064040.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gossard, E. E., and R. G. Strauch, 1983: Radar Observations of Clear Air and Clouds. Elsevier, 280 pp.

  • Görsdorf, J. U., V. Lehmann, M. Bauer-Pfundstein, G. Peters, D. Vavriv, V. Vinogradov, and V. Volkov, 2015: A 35-GHz polarimetric Doppler radar for long-term observations of cloud parameters—Description of system and data processing. J. Atmos. Oceanic Technol., 32, 675690, doi:10.1175/JTECH-D-14-00066.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ice, R. I., A. K. Heck, J. G. Cunningham, and W. D. Zittel, 2014: Challenges of polarimetric weather radar calibration. Proc. Eighth European Conf. Radar in Meteorology and Hydrology, Garmisch-Partenkirhen, Germany, DWD and DLR, 8.1. [Available online at http://www.pa.op.dlr.de/erad2014/programme/ExtendedAbstracts/117_Ice.pdf.]

  • Hogan, R. J., P. R. Field, A. J. Illingworth, A. J. Cotton, and T. W. Choularton, 2002: Properties of embedded convection in warm-frontal mixed-phase cloud from aircraft and polarimetric radar. Quart. J. Roy. Meteor. Soc., 128, 451476, doi:10.1256/003590002321042054.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hogan, R. J., L. Tian, P. R. A. Brown, C. D. Westbrook, A. J. Heymsfield, and J. D. Eastment, 2012: Radar scattering from ice aggregates using the horizontally aligned oblate spheroid approximation. J. Appl. Meteor. Climatol., 51, 655671, doi:10.1175/JAMC-D-11-074.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holt, A. R., 1984: Some factors affecting the remote sensing of rain by polarization diversity radar in 3- to 35-GHz frequency range. Radio Sci., 19, 13991421, doi:10.1029/RS019i005p01399.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hong, G., 2007: Parametrization of scattering and absorption properties of nonspherical ice crystals at microwave frequencies. J. Geophys. Res., 112, D11208, doi:10.1029/2006JD008364.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hubbert, J. C., S. M. Ellis, W.-Y. Chang, S. Rutledge, and M. Dixon, 2014a: Modeling and interpretation of S-band ice crystal depolarization signatures from data obtained by simultaneously transmitting horizontally and vertically polarized fields. J. Appl. Meteor. Climatol., 53, 16591677, doi:10.1175/JAMC-D-13-0158.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hubbert, J. C., S. M. Ellis, W.-Y. Chang, and Y.-C. Liou, 2014b: X-band polarimetric observations of cross coupling in the ice phase of convective storms in Taiwan. J. Appl. Meteor. Climatol., 53, 16781695, doi:10.1175/JAMC-D-13-0360.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kajikawa, M., 1976: Observation of falling motion of columnar snow crystals. J. Meteor. Soc. Japan, 54, 276283.

  • Klett, J. D., 1995: Orientation model for particles in turbulence. J. Atmos. Sci., 52, 22762285, doi:10.1175/1520-0469(1995)052<2276:OMFPIT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kneifel, S., A. von Lerber, J. Tiira, D. Moisseev, P. Kollias, and J. Leinonen, 2015: Observed relations between snowfall microphysics and triple-frequency radar measurements. J. Geophys. Res. Atmos., 120, 60346055, doi:10.1002/2015JD023156.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, G., 2008: A database of microwave single-scattering properties for nonspherical ice particles. Bull. Amer. Meteor. Soc., 89, 15631570, doi:10.1175/2008BAMS2486.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mace, G. G., A. J. Heymsfield, and M. R. Poellot, 2002: On retrieving the microphysical properties of cirrus clouds using the moments of the millimeter-wavelength Doppler spectrum. J. Geophys. Res., 107, 48154823, doi:10.1029/2001JD001308.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Matrosov, S. Y., 2015: Evaluations of the spheroidal particle model for describing cloud radar depolarization ratios of ice hydrometeors. J. Atmos. Oceanic Technol., 32, 865879, doi:10.1175/JTECH-D-14-00115.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Matrosov, S. Y., R. A. Kropfli, B. E. Martner, and B. W. Bartram, 2001: On the use of radar depolarization ratios for estimating shapes of ice hydrometeors in winter clouds. J. Appl. Meteor., 40, 479490, doi:10.1175/1520-0450(2001)040<0479:OTUORD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Matrosov, S. Y., R. F. Reinking, and I. V. Djalalova, 2005: Inferring fall attitudes of pristine dendritic crystals from polarimetric radar data. J. Atmos. Sci., 62, 241250, doi:10.1175/JAS-3356.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Melnikov, V. M., and D. S. Zrnić, 2007: Autocorrelation and cross-correlation estimators of polarimetric variables. J. Atmos. Oceanic Technol., 24, 13371350, doi:10.1175/JTECH2054.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Melnikov, V. M., and J. Straka, 2013: Axis ratios and flutter angles of cloud ice particles: Retrievals from radar data. J. Atmos. Oceanic Technol., 30, 16911703, doi:10.1175/JTECH-D-12-00212.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Melnikov, V. M., D. S. Zrnić, R. J. Doviak, P. B. Chilson, D. B. Mechem, and Y. Kogan, 2011: Prospects of the WSR-88D radar for cloud studies. J. Appl. Meteor. Climatol., 50, 859872, doi:10.1175/2010JAMC2303.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mishchenko, M. I., D. J. Wielaard, and B. E. Carlson, 1997: T-matrix computations of zenith-enhanced lidar backscatter from horizontally oriented ice plates. Geophys. Res. Lett., 24, 771774, doi:10.1029/97GL00545.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Myagkov, A., P. Seifert, M. Bauer-Pfundstein, and U. Wandinger, 2016: Cloud radar with hybrid mode towards estimation of shape and orientation of ice crystals. Atmos. Meas. Tech., 9, 469489, doi:10.5194/amt-9-469-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Noel, V., and H. Chepher, 2004: Study of ice crystal orientation in cirrus clouds based on satellite polarized radiance measurements. J. Atmos. Sci., 61, 20732081, doi:10.1175/1520-0469(2004)061<2073:SOICOI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Noel, V., and K. Sassen, 2005: Study of planar ice crystal orientation in ice clouds from scanning polarization lidar observations. J. Appl. Meteor., 44, 653664, doi:10.1175/JAM2223.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Platt, C. M. R., 1977: Lidar observations of a mixed-phase altocumulus cloud. J. Appl. Meteor., 16, 339345, doi:10.1175/1520-0450(1977)016<0339:LOOAMP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Platt, C. M. R., 1978: Lidar backscatter from horizontal ice crystal plates. J. Appl. Meteor., 17, 482488, doi:10.1175/1520-0450(1978)017<0482:LBFHIC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Platt, C. M. R., N. I. Abshire, and G. T. McNice, 1978: Some microphysical properties of an ice cloud from lidar observations of horizontally oriented crystals. J. Appl. Meteor., 17, 12201224, doi:10.1175/1520-0450(1978)017<1220:SMPOAI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pruppacher, H. R., and J. D. Klett, 1997: Microphysics of Clouds and Precipitation. Kluwer Academic, 954 pp.

  • Ryzhkov, A. V., and D. S. Zrnić, 2007: Depolarization in ice crystals and its effect on radar polarimetric measurements. J. Atmos. Oceanic Technol., 24, 12561267, doi:10.1175/JTECH2034.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Teschl, F., W. L. Randeu, and R. Teschl, 2009: Single scattering from frozen hydrometeors at microwave frequencies. Atmos. Res., 94, 564578, doi:10.1016/j.atmosres.2009.09.001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Teschl, F., W. L. Randeu, and R. Teschl, 2013: Single scattering of preferentially oriented ice crystals at centimeter and millimeter wavelengths. Atmos. Res., 119, 112119, doi:10.1016/j.atmosres.2011.10.004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tyynelä, J., J. Leinonen, D. Moisseev, and T. Nousiainen, 2011: Radar backscattering from snowflakes: Comparison of fractal, aggregate, and soft spheroid models. J. Appl. Meteor. Climatol., 28, 13651372, doi:10.1175/JTECH-D-11-00004.1.

    • Search Google Scholar
    • Export Citation
  • Vivekanandan, J., W. M. Adams, and V. N. Bringi, 1991: Rigorous approach to polarimetric radar modeling of hydrometeor orientation distributions. J. Appl. Meteor., 30, 10531063, doi:10.1175/1520-0450(1991)030<1053:RATPRM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Westbrook, C. D., A. J. Illingworth, E. J. O’Connor, and R. J. Hogan, 2010: Doppler lidar measurements of oriented planar ice crystals falling from supercooled and glaciated cloud layers. Quart. J. Roy. Meteor. Soc., 136, 260276, doi:10.1002/qj.528.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Westbrook, C. D., 2014: Rayleigh scattering by hexagonal ice crystals and the interpretation of dual-polarization radar measurements. Quart. J. Roy. Meteor. Soc., 140, 20902096, doi:10.1002/qj.2262.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Williams, E. R., and Coauthors, 2013: End-to-end calibration of NEXRAD differential reflectivity with metal spheres. 36th Conf. on Radar Meteorology, Breckenridge, CO, Amer. Meteor. Soc., 316. [Available online at https://ams.confex.com/ams/36Radar/webprogram/Paper228796.html.]

  • Williams, E. R., and Coauthors, 2015: Measurements of differential reflectivity in snowstorms and warm season stratiform systems. J. Appl. Meteor. Climatol., 54, 573595, doi:10.1175/JAMC-D-14-0020.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zikmunda, J., and G. Vali, 1972: Fall patterns and fall velocities of rimed ice crystals. J. Atmos. Sci., 29, 13341347, doi:10.1175/1520-0469(1972)029<1334:FPAFVO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zrnić, D. S., V. M. Melnikov, and J. K. Carter, 2006: Calibrating differential reflectivity on the WSR-88D. J. Atmos. Oceanic Technol., 23, 944951, doi:10.1175/JTECH1893.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 311 98 8
PDF Downloads 254 69 13