Interpolation of Operational Radar Data to a Regular Cartesian Grid Exemplified by Munich’s Airport Radar Configuration

Ayla Augst Institut of Atmospheric Physics, DLR, Oberpfaffenhofen, Germany

Search for other papers by Ayla Augst in
Current site
Google Scholar
PubMed
Close
and
Martin Hagen Institut of Atmospheric Physics, DLR, Oberpfaffenhofen, Germany

Search for other papers by Martin Hagen in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Two methods for avoiding errors in the interpolation of operational radar data to a regular grid are presented. The issue is the interpolation of radial velocity and the subsequent estimation of horizontal wind components. It is shown how a vertical gradient of the horizontal wind in combination with gaps of data between scans with different elevation angles affect the interpolation. Simulated radar data for the radar configuration covering the Munich airport in southern Germany are used for illustration. The origin of the abovementioned errors is explained using simplified wind fields. With wind fields generated by the German nonhydrostatic atmospheric prediction model COSMO-DE, the effectiveness of the methods is presented. Both methods contribute to a reduction in interpolation error—by 44% and 35%, respectively—compared to a standard interpolation scheme used for many operational radar configurations.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author e-mail: Ayla Augst, ayla.augst@dlr.de

Abstract

Two methods for avoiding errors in the interpolation of operational radar data to a regular grid are presented. The issue is the interpolation of radial velocity and the subsequent estimation of horizontal wind components. It is shown how a vertical gradient of the horizontal wind in combination with gaps of data between scans with different elevation angles affect the interpolation. Simulated radar data for the radar configuration covering the Munich airport in southern Germany are used for illustration. The origin of the abovementioned errors is explained using simplified wind fields. With wind fields generated by the German nonhydrostatic atmospheric prediction model COSMO-DE, the effectiveness of the methods is presented. Both methods contribute to a reduction in interpolation error—by 44% and 35%, respectively—compared to a standard interpolation scheme used for many operational radar configurations.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author e-mail: Ayla Augst, ayla.augst@dlr.de
Save
  • Armijo, L., 1969: A theory for the determination of wind and precipitation velocities with Doppler radars. J. Atmos. Sci., 26, 570573, doi:10.1175/1520-0469(1969)026<0570:ATFTDO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Askelson, M. A., J.-P. Aubagnac, and J. M. Straka, 2000: An adaptation of the Barnes filter applied to the objective analysis of radar data. Mon. Wea. Rev., 128, 30503082, doi:10.1175/1520-0493(2000)128<3050:AAOTBF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Baldauf, M., A. Seifert, J. Förstner, D. Majewski, M. Raschendorfer, and T. Reinhardt, 2011: Operational convective-scale numerical weather prediction with the COSMO model: Description and sensitivities. Mon. Wea. Rev., 139, 38873905, doi:10.1175/MWR-D-10-05013.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Beck, J., M. Nuret, and O. Bousquet, 2014: Model wind field forecast verification using multiple-Doppler syntheses from a national radar network. Wea. Forecasting, 29, 331348, doi:10.1175/WAF-D-13-00068.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bousquet, O., and M. Chong, 1998: A multiple-Doppler synthesis and continuity adjustment technique (MUSCAT) to recover wind components from Doppler radar measurements. J. Atmos. Oceanic Technol., 15, 343359, doi:10.1175/1520-0426(1998)015<0343:AMDSAC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bousquet, O., and P. Tabary, 2014: Development of a nationwide real-time 3-D wind and reflectivity radar composite in France. Quart. J. Roy. Meteor. Soc., 140, 611625, doi:10.1002/qj.2163.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bousquet, O., P. Tabary, and J. Parent du Châtelet, 2008: Operational multiple-Doppler wind retrieval inferred from long-range radial velocity measurements. J. Appl. Meteor. Climatol., 47, 29292945, doi:10.1175/2008JAMC1878.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bousquet, O., J. Delanoë, and S. Bielli, 2016: Evaluation of 3D wind observations inferred from the analysis of airborne and ground-based radars during HyMeX SOP-1. Quart. J. Roy. Meteor. Soc., 142, 8694, doi:10.1002/qj.2710.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cressman, G. P., 1959: An operational objective analysis system. Mon. Wea. Rev., 87, 367374, doi:10.1175/1520-0493(1959)087<0367:AOOAS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Easterbrook, C. C., 1975: Estimating horizontal wind fields by two-dimensional curve fitting of single Doppler radar measurements. Preprints, 16th Conf. on Radar Meteorology, Houston, TX, Amer. Meteor. Soc., 214–219.

  • Gao, J., M. Xue, A. Shapiro, and K. K. Droegemeier, 1999: A variational method for the analysis of three-dimensional wind fields from two Doppler radars. Mon. Wea. Rev., 127, 21282142, doi:10.1175/1520-0493(1999)127<2128:AVMFTA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Helmert, K., and Coauthors, 2014: DWDs new radar network and post-processing algorithm chain. Extended Abstracts, Eighth European Conf. on Radar in Meteorology and Hydrology, Garmisch-Patenkirchen, Germany, ERAD, 4.4. [Available online at http://www.pa.op.dlr.de/erad2014/programme/ExtendedAbstracts/237_Helmert.pdf.]

  • Joss, J., and A. Waldvogel, 1970: A method to improve the accuracy of radar-measured amounts of precipitation. Preprints, 14th Conf. on Radar Meteorology, Tucson, AZ, Amer. Meteor. Soc., 237–238.

  • Kessler, E., 1995: On the continuity and distribution of water substance in atmospheric circulations. Atmos. Res., 38, 109145, doi:10.1016/0169-8095(94)00090-Z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lakshmanan, V., T. Smith, K. Hondl, G. J. Stumpf, and A. Witt, 2006: A real-time, three-dimensional, rapidly updating, heterogeneous radar merger technique for reflectivity, velocity, and derived products. Wea. Forecasting, 21, 802823, doi:10.1175/WAF942.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Laroche, S., and I. Zawadzki, 1994: A variational analysis method for retrieval of three-dimensional wind field from single-Doppler radar data. J. Atmos. Sci., 51, 26642682, doi:10.1175/1520-0469(1994)051<2664:AVAMFR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lhermitte, R. M., 1966: Application of pulse Doppler radar technique to meteorology. Bull. Amer. Meteor. Soc., 47, 703711.

  • López Carrillo, C., and D. Raymond, 2011: Retrieval of three-dimensional wind fields from Doppler radar data using an efficient two-step approach. Atmos. Meas. Tech., 4, 27172733, doi:10.5194/amt-4-2717-2011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Miller, L., and R. Strauch, 1974: A dual Doppler radar method for the determination of wind velocities within precipitating weather systems. Remote Sens. Environ., 3, 219235, doi:10.1016/0034-4257(74)90044-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nash, S. G., and A. Sofer, 1996: Linear and Nonlinear Programming. McGraw-Hill, 692 pp.

  • Probert-Jones, J., 1960: Meteorological use of pulsed Doppler radar. Nature, 186, 271273, doi:10.1038/186271a0.

  • Protat, A., and I. Zawadzki, 1999: A variational method for real-time retrieval of three-dimensional wind field from multiple-Doppler bistatic radar network data. J. Atmos. Oceanic Technol., 16, 432449, doi:10.1175/1520-0426(1999)016<0432:AVMFRT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ray, P. S., C. L. Ziegler, W. Bumgarner, and R. J. Serafin, 1980: Single- and multiple-Doppler radar observations of tornadic storms. Mon. Wea. Rev., 108, 16071625, doi:10.1175/1520-0493(1980)108<1607:SAMDRO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Simonin, D., S. Ballard, and Z. Li, 2014: Doppler radar radial wind assimilation using an hourly cycling 3D-Var with a 1.5 km resolution version of the Met Office Unified Model for nowcasting. Quart. J. Roy. Meteor. Soc., 140, 22982314, doi:10.1002/qj.2298.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tuttle, J. D., and G. B. Foote, 1990: Determination of the boundary layer airflow from a single Doppler radar. J. Atmos. Oceanic Technol., 7, 218232, doi:10.1175/1520-0426(1990)007<0218:DOTBLA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Van Zadelhoff, G.-J., A. Stoffelen, P. Vachon, J. Wolfe, J. Horstmann, and M. Belmonte Rivas, 2014: Retrieving hurricane wind speeds using cross-polarization C-band measurements. Atmos. Meas. Tech., 7, 437449, doi:10.5194/amt-7-437-2014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Waldteufel, P., and H. Corbin, 1979: On the analysis of single-Doppler radar data. J. Appl. Meteor., 18, 532542, doi:10.1175/1520-0450(1979)018<0532:OTAOSD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Woodhouse, M., A. Hogg, J. Phillips, and R. Sparks, 2013: Interaction between volcanic plumes and wind during the 2010 Eyjafjallajökull eruption, Iceland. J. Geophys. Res. Solid Earth, 118, 92109, doi:10.1029/2012JB009592.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, J., K. Howard, and J. Gourley, 2005: Constructing three-dimensional multiple-radar reflectivity mosaics: Examples of convective storms and stratiform rain echoes. J. Atmos. Oceanic Technol., 22, 3042, doi:10.1175/JTECH-1689.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, J., and Coauthors, 2011: National Mosaic and Multi-Sensor QPE (NMQ) system: Description, results, and future plans. Bull. Amer. Meteor. Soc., 92, 13211338, doi:10.1175/2011BAMS-D-11-00047.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 910 207 10
PDF Downloads 711 126 9