Storm Tracking via Tree Structure Representation of Radar Data

Jinyi Hou School of Electrical Engineering and Automation, Tianjin University, Tianjin, China

Search for other papers by Jinyi Hou in
Current site
Google Scholar
PubMed
Close
and
Ping Wang School of Electrical Engineering and Automation, Tianjin University, Tianjin, China

Search for other papers by Ping Wang in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

An algorithm for automatic storm identification, tracking, and nowcasting using tree structure representation of radar reflectivity images is proposed. The algorithm aims to track and nowcast different kinds of storm objects (stratiform regions, convective storms, and storm cells) simultaneously and to preserve their spatial relationships in the tracking and nowcasting processes. The algorithm applies a region tree structure to represent intensity regions and their spatial relationships in radar reflectivity images. Storm objects are identified by clustering regions within the region tree structure. Storm tracking is accomplished using an iterative region tree matching algorithm. Storm nowcasting applies the tree structure to the nowcasting of the internal structures of storm objects. Using eight cases with different storm types, a comparative evaluation with the enhanced Thunderstorm Identification, Tracking, Analysis, and Nowcasting (ETITAN) method and the Storm Cell Identification and Tracking (SCIT) method has shown that the proposed tree-based storm-tracking algorithm achieves better performance in storm tracking and nowcasting. The critical success index (CSI) value of storm association is 78.16% for the tree-based method, as compared with 74.88% for SCIT and 74.71% for ETITAN. The CSI value of an 18-min nowcast is 29.02% for the tree-based method, as compared with 24.98% for SCIT and 24.44% for ETITAN. The evaluation also shows that the tree-based method is able to nowcast the internal structure of storms and therefore produces small mean absolute errors (MAE).

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author e-mail: Jinyi Hou, houjinyi@tju.edu.cn

Abstract

An algorithm for automatic storm identification, tracking, and nowcasting using tree structure representation of radar reflectivity images is proposed. The algorithm aims to track and nowcast different kinds of storm objects (stratiform regions, convective storms, and storm cells) simultaneously and to preserve their spatial relationships in the tracking and nowcasting processes. The algorithm applies a region tree structure to represent intensity regions and their spatial relationships in radar reflectivity images. Storm objects are identified by clustering regions within the region tree structure. Storm tracking is accomplished using an iterative region tree matching algorithm. Storm nowcasting applies the tree structure to the nowcasting of the internal structures of storm objects. Using eight cases with different storm types, a comparative evaluation with the enhanced Thunderstorm Identification, Tracking, Analysis, and Nowcasting (ETITAN) method and the Storm Cell Identification and Tracking (SCIT) method has shown that the proposed tree-based storm-tracking algorithm achieves better performance in storm tracking and nowcasting. The critical success index (CSI) value of storm association is 78.16% for the tree-based method, as compared with 74.88% for SCIT and 74.71% for ETITAN. The CSI value of an 18-min nowcast is 29.02% for the tree-based method, as compared with 24.98% for SCIT and 24.44% for ETITAN. The evaluation also shows that the tree-based method is able to nowcast the internal structure of storms and therefore produces small mean absolute errors (MAE).

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author e-mail: Jinyi Hou, houjinyi@tju.edu.cn
Save
  • Dance, S., E. Ebert, and D. Scurrah, 2010: Thunderstorm strike probability nowcasting. J. Atmos. Oceanic Technol., 27, 7993, doi:10.1175/2009JTECHA1279.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dixon, M., and G. Wiener, 1993: TITAN: Thunderstorm Identification, Tracking, Analysis, and Nowcasting—A radar-based methodology. J. Atmos. Oceanic Technol., 10, 785797, doi:10.1175/1520-0426(1993)010<0785:TTITAA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fox, N. I., and C. K. Wikle, 2005: A Bayesian quantitative precipitation nowcast scheme. Wea. Forecasting, 20, 264275, doi:10.1175/WAF845.1.

  • Gagne, D. J., A. McGovern, and J. Brotzge, 2009: Classification of convective areas using decision trees. J. Atmos. Oceanic Technol., 26, 13411353, doi:10.1175/2008JTECHA1205.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Germann, U., and I. Zawadzki, 2002: Scale-dependence of the predictability of precipitation from continental radar images. Part I: Description of the methodology. Mon. Wea. Rev., 130, 28592873, doi:10.1175/1520-0493(2002)130<2859:SDOTPO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Germann, U., and I. Zawadzki, 2004: Scale dependence of the predictability of precipitation from continental radar images. Part II: Probability forecasts. J. Appl. Meteor., 43, 7489, doi:10.1175/1520-0450(2004)043<0074:SDOTPO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Han, L., S. Fu, L. Zhao, Y. Zheng, H. Wang, and Y. Lin, 2009: 3D convective storm identification, tracking, and forecasting—An enhanced TITAN algorithm. J. Atmos. Oceanic Technol., 26, 719732, doi:10.1175/2008JTECHA1084.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Handwerker, J., 2002: Cell tracking with TRACE3D—A new algorithm. Atmos. Res., 61, 1534, doi:10.1016/S0169-8095(01)00100-4.

  • Houlahan, P., and J. Scalo, 1992: Recognition and characterization of hierarchical interstellar structure. II—Structure tree statistics. Astrophys. J., 393, 172187, doi:10.1086/171495.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Johnson, J. T., P. L. MacKeen, A. Witt, E. D. Mitchell, G. J. Stumpf, M. D. Eilts, and K. W. Thomas, 1998: The Storm Cell Identification and Tracking algorithm: An enhanced WSR-88D algorithm. Wea. Forecasting, 13, 263276, doi:10.1175/1520-0434(1998)013<0263:TSCIAT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kyznarová, H., and P. Novák, 2009: CELLTRACK—Convective cell tracking algorithm and its use for deriving life cycle characteristics. Atmos. Res., 93, 317327, doi:10.1016/j.atmosres.2008.09.019.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lai, E. S. T., 1999: TREC application in tropical cyclone observation. Proc. ESCAP/WMO Typhoon Committee Annual Review, Seoul, South Korea, The Typhoon Committee, 135–139.

  • Lakshmanan, V., and T. Smith, 2010: An objective method of evaluating and devising storm-tracking algorithms. Wea. Forecasting, 25, 701709, doi:10.1175/2009WAF2222330.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lakshmanan, V., R. Rabin, and V. DeBrunner, 2003: Multiscale storm identification and forecast. J. Atmos. Res., 67–68, 367380, doi:10.1016/S0169-8095(03)00068-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lakshmanan, V., K. Hondl, and R. Rabin, 2009: An efficient, general-purpose technique for identifying storm cells in geospatial images. J. Atmos. Oceanic Technol., 26, 523537, doi:10.1175/2008JTECHA1153.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, L., W. Schmid, and J. Joss, 1995: Nowcasting of motion and growth of precipitation with radar over a complex orography. J. Appl. Meteor., 34, 12861300, doi:10.1175/1520-0450(1995)034<1286:NOMAGO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Megenhardt, D. L., C. Mueller, S. Trier, D. Ahijevych, and N. Rehak, 2004: NCWF-2 probabilistic nowcasts. 11th Conf. on Aviation, Range, and Aerospace, Hyannis, MA, Amer. Meteor. Soc., 5.2. [Available online at https://ams.confex.com/ams/11aram22sls/webprogram/Paper81993.html.]

  • Parker, M. D., and R. H. Johnson, 2000: Organizational modes of midlatitude mesoscale convective systems. Mon. Wea. Rev., 128, 34133436, doi:10.1175/1520-0493(2001)129<3413:OMOMMC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peura, M., 1999: Classifying, monitoring and tracking precipitation cells by means of attribute trees. Preprints, 29th Int. Conf. on Radar Meteorology, Montreal, QC, Canada, Amer. Meteor. Soc., 86–89.

  • Peura, M., 2001: Attribute trees as adaptive object models in image analysis. Doctoral thesis, Helsinki University of Technology, 80 pp. [Available online at https://aaltodoc.aalto.fi/handle/123456789/2323.]

  • Rinehart, R. E., 1981: A pattern recognition technique for use with conventional weather radar to determine internal storm motions. Atmos. Technol., 13, 119134.

    • Search Google Scholar
    • Export Citation
  • Rinehart, R. E., and E. T. Garvey, 1978: Three-dimensional storm motion detection by conventional weather radar. Nature, 273, 287289, doi:10.1038/273287a0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Robert, H. M., and L. G. Shapiro, 1992: Computer and Robot Vision. Vol. 1. Addison-Wesley, 630 pp.

  • Rood, R. B., 1987: Numerical advection algorithms and their role in atmospheric transport and chemistry models. Rev. Geophys., 25, 71100, doi:10.1029/RG025i001p00071.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rosenfeld, D., 1987: Objective method for analysis and tracking of convective cells as seen by radar. J. Atmos. Oceanic Technol., 4, 422434, doi:10.1175/1520-0426(1987)004<0422:OMFAAT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rossi, P. J., V. Chandrasekar, V. Hasu, and D. Moisseev, 2015: Kalman filtering–based probabilistic nowcasting of object-oriented tracked convective storms. J. Atmos. Oceanic Technol., 32, 461477, doi:10.1175/JTECH-D-14-00184.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ruzanski, E., V. Chandrasekar, and Y. Wang, 2011: The CASA nowcasting system. J. Atmos. Oceanic Technol., 28, 640655, doi:10.1175/2011JTECHA1496.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schmeits, M. J., K. J. Kok, D. H. P. Vogelezang, and R. M. V. Westrhenen, 2008: Probabilistic forecasts of (severe) thunderstorms for the purpose of issuing a weather alarm in the Netherlands. Wea. Forecasting, 23, 12531267, doi:10.1175/2008WAF2007102.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seed, A. W., 2003: A dynamic and spatial scaling approach to advection forecasting. J. Appl. Meteor., 42, 381388, doi:10.1175/1520-0450(2003)042<0381:ADASSA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Turner, B. J., I. Zawadzki, and U. Germann, 2004: Predictability of precipitation from continental radar images. Part III: Operational nowcasting implementation (MAPLE). J. Appl. Meteor., 43, 231248, doi:10.1175/1520-0450(2004)043<0231:POPFCR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tuttle, J. D., and G. B. Foote, 1990: Determination of the boundary layer airflow from a single Doppler radar. J. Atmos. Oceanic Technol., 7, 218232, doi:10.1175/1520-0426(1990)007<0218:DOTBLA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wilson, J. W., N. A. Crook, C. K. Mueller, J. Sun, and M. Dixon, 1998: Nowcasting thunderstorms: A status report. Bull. Amer. Meteor. Soc., 79, 20792099, doi:10.1175/1520-0477(1998)079<2079:NTASR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wolfson, M. M., B. E. Forman, R. G. Hallowell, and M. P. Moore, 1999: The growth and decay storm tracker. Preprints, Eighth Conf. on Aviation, Range, and Aerospace Meteorology, Dallas, TX, Amer. Meteor. Soc., 4.3. [Available online at https://ams.confex.com/ams/older/99annual/abstracts/1494.htm.]

  • Xu, K., C. K. Wikle, and N. I. Fox, 2005: A kernel-based spatio-temporal dynamical model for nowcasting weather radar reflectivities. J. Amer. Stat. Assoc., 100, 11331144, doi:10.1198/016214505000000682.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1340 602 18
PDF Downloads 415 68 1