Retrieving Fall Streaks within Cloud Systems Using Doppler Radar

Lukas Pfitzenmaier Department of Geoscience and Remote Sensing, Faculty of Civil Engineering and Geosciences, Delft University of Technology, Delft, Netherlands

Search for other papers by Lukas Pfitzenmaier in
Current site
Google Scholar
PubMed
Close
,
Yann Dufournet Department of Geoscience and Remote Sensing, Faculty of Civil Engineering and Geosciences, Delft University of Technology, Delft, Netherlands

Search for other papers by Yann Dufournet in
Current site
Google Scholar
PubMed
Close
,
Christine M. H. Unal Department of Geoscience and Remote Sensing, Faculty of Civil Engineering and Geosciences, Delft University of Technology, Delft, Netherlands

Search for other papers by Christine M. H. Unal in
Current site
Google Scholar
PubMed
Close
, and
Herman W. J. Russchenberg Department of Geoscience and Remote Sensing, Faculty of Civil Engineering and Geosciences, Delft University of Technology, Delft, Netherlands

Search for other papers by Herman W. J. Russchenberg in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The interaction of ice crystals with supercooled liquid droplets in mixed-phase clouds leads to an enhanced growth of ice particles. However, such processes are still not clearly understood although they are important processes for precipitation formation in midlatitudes. To better understand how ice particles grow within such clouds, changes in the microphysical parameters of a particle population falling through the cloud have to be analyzed. The Transportable Atmospheric Radar (TARA) can retrieve the full 3D Doppler velocity vector based on a unique three-beam configuration. Using the derived wind information, a new fall streak retrieval technique is proposed so that microphysical changes along those streaks can be studied. The method is based on Doppler measurements only. The shown examples measured during the Analysis of the Composition of Clouds with Extended Polarization Techniques (ACCEPT) campaign demonstrate that the retrieval is able to capture the fall streaks within different cloud systems. These fall streaks can be used to study changes in a single particle population from its generation (at cloud top) until its disintegration. In this study fall streaks are analyzed using radar moments or Doppler spectra. Synergetic measurements with other instruments during ACCEPT allow the detection of liquid layers within the clouds. The estimated microphysical information is used here to get a better understanding of the influence of supercooled liquid layers on ice crystal growth. This technique offers a new perspective for cloud microphysical studies.

Denotes content that is immediately available upon publication as open access.

© 2017 American Meteorological Society.

Current affiliation: SkyEcho, Delft, Netherlands.

Corresponding author e-mail: Lukas Pfitzenmaier, l.pfitzenmaier@tudelft.nl

Abstract

The interaction of ice crystals with supercooled liquid droplets in mixed-phase clouds leads to an enhanced growth of ice particles. However, such processes are still not clearly understood although they are important processes for precipitation formation in midlatitudes. To better understand how ice particles grow within such clouds, changes in the microphysical parameters of a particle population falling through the cloud have to be analyzed. The Transportable Atmospheric Radar (TARA) can retrieve the full 3D Doppler velocity vector based on a unique three-beam configuration. Using the derived wind information, a new fall streak retrieval technique is proposed so that microphysical changes along those streaks can be studied. The method is based on Doppler measurements only. The shown examples measured during the Analysis of the Composition of Clouds with Extended Polarization Techniques (ACCEPT) campaign demonstrate that the retrieval is able to capture the fall streaks within different cloud systems. These fall streaks can be used to study changes in a single particle population from its generation (at cloud top) until its disintegration. In this study fall streaks are analyzed using radar moments or Doppler spectra. Synergetic measurements with other instruments during ACCEPT allow the detection of liquid layers within the clouds. The estimated microphysical information is used here to get a better understanding of the influence of supercooled liquid layers on ice crystal growth. This technique offers a new perspective for cloud microphysical studies.

Denotes content that is immediately available upon publication as open access.

© 2017 American Meteorological Society.

Current affiliation: SkyEcho, Delft, Netherlands.

Corresponding author e-mail: Lukas Pfitzenmaier, l.pfitzenmaier@tudelft.nl
Save
  • Althausen, D., R. Engelmann, H. Baars, B. Heese, A. Ansmann, D. Müller, and M. Komppula, 2009: Portable Raman lidar PollyXT for automated profiling of aerosol backscatter, extinction, and depolarization. J. Atmos. Oceanic Technol., 26, 2366, doi:10.1175/2009JTECHA1304.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Browne, I. C., 1952: Precipitation streaks as a cause of radar upper bands. Quart. J. Roy. Meteor. Soc., 78, 590595, doi:10.1002/qj.49707833809.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bühl, J., and Coauthors, 2013: LACROS: The Leipzig Aerosol and Cloud Remote Observations System. Remote Sensing of Clouds and the Atmosphere XVIII; and Optics in Atmospheric Propagation and Adaptive Systems XVI, A. Comeron et al., Eds., International Society for Optical Engineering (SPIE Proceedings, Vol. 8890), 889002, doi:10.1117/12.2030911.

    • Crossref
    • Export Citation
  • de Boer, G., E. W. Eloranta, and M. D. Shupe, 2009: Arctic mixed-phase stratiform cloud properties from multiple years of surface-based measurements at two high-latitude locations. J. Atmos. Sci., 66, 2874, doi:10.1175/2009JAS3029.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Görsdorf, U., V. Lehmann, M. Bauer-Pfundstein, G. Peters, D. Vavriv, V. Vinogradov, and V. Volkov, 2015: A 35-GHz polarimetric Doppler radar for long-term observations of cloud parameters—Description of system and data processing. J. Atmos. Oceanic Technol., 32, 675690, doi:10.1175/JTECH-D-14-00066.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Heijnen, S. H., L. P. Ligthart, and H. W. J. Russchenberg, 2000: First measurements with TARA; an S-band transportable atmospheric radar. Phys. Chem. Earth, 25B, 995998, doi:10.1016/S1464-1909(00)00140-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Heymsfield, A., 1975a: Cirrus uncinus generating cells and the evolution of cirriform clouds. Part I: Aircraft observations of the growth of the ice phase. J. Atmos. Sci., 32, 799808, doi:10.1175/1520-0469(1975)032<0799:CUGCAT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Heymsfield, A., 1975b: Cirrus uncinus generating cells and the evolution of cirriform clouds. Part II: The structure and circulations of the cirrus uncinus generating head. J. Atmos. Sci., 32, 809819, doi:10.1175/1520-0469(1975)032<0809:CUGCAT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hogan, R. J., and S. F. Kew, 2005: A 3D stochastic cloud model for investigating the radiative properties of inhomogeneous cirrus clouds. Quart. J. Roy. Meteor. Soc., 131, 25852608, doi:10.1256/qj.04.144.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kalesse, H., W. Szyrmer, S. Kneifel, P. Kollias, and E. Luke, 2016: Fingerprints of a riming event on cloud radar Doppler spectra: Observations and modeling. Atmos. Chem. Phys., 16, 29973012, doi:10.5194/acp-16-2997-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kollias, P., and B. Albrecht, 2010: Vertical velocity statistics in fair-weather cumuli at the ARM TWP Nauru Climate Research Facility. J. Climate, 23, 65906604, doi:10.1175/2010JCLI3449.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kollias, P., E. E. Clothiaux, M. A. Miller, B. A. Albrecht, G. L. Stephens, and T. P. Ackerman, 2007: Millimeter-wavelength radars: New frontier in atmospheric cloud and precipitation research. Bull. Amer. Meteor. Soc., 88, 1608, doi:10.1175/BAMS-88-10-1608.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kumjian, M. R., S. A. Rutledge, R. M. Rasmussen, P. C. Kennedy, and M. Dixon, 2014: High-resolution polarimetric radar observations of snow-generating cells. J. Appl. Meteor. Climatol., 53, 16361658, doi:10.1175/JAMC-D-13-0312.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marshall, J. S., 1953: Precipitation trajectories and patterns. J. Meteor., 10, 2529, doi:10.1175/1520-0469(1953)010<0025:PTAP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marshall, J. S., and K. L. S. Gunn, 1954: Measurement of snow parameters by radar. J. Meteor., 9, 322327, doi:10.1175/1520-0469(1952)009<0322:MOSPBR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mittermaier, P. M., J. R. Hogan, and J. A. Illingworth, 2004: Using mesoscale model winds for correcting wind-drift errors in radar estimates of surface rainfall. Quart. J. Roy. Meteor. Soc., 130, 21052123, doi:10.1256/qj.03.156.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Myagkov, A., P. Seifert, U. Wandinger, J. Bühl, and R. Engelmann, 2016: Relationship between temperature and apparent shape of pristine ice crystals derived from polarimetric cloud radar observations during the ACCEPT campaign. Atmos. Meas. Tech., 9, 37393754, doi:10.5194/amt-9-3739-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Oude Nijhuis, A. C. P., F. J. Yanovsky, O. A. Krasnov, C. M. H. Unal, H. W. J. Russchenberg, and A. Yarovoy, 2016: Assessment of the rain drop inertia effect for radar based turbulence intensity retrievals. Int. J. Microwave Wireless Technol., 8, 835844, doi:10.1017/S1759078716000660.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Oue, M., M. R. Kumjian, Y. Lu, Z. Jiang, E. E. Clothiaux, J. Verlinde, and K. Aydin, 2015: X-band polarimetric and Ka-band Doppler spectral radar observations of a graupel-producing Arctic mixed-phase cloud. J. Appl. Meteor. Climatol., 54, 13351351, doi:10.1175/JAMC-D-14-0315.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pruppacher, H. R., and D. J. Klett, 1996: Microphysics of Clouds and Precipitation. Atmospheric and Oceanographic Sciences Library, Vol. 18, Springer, 976 pp.

  • Shupe, M. D., and Coauthors, 2008: A focus on mixed-phase clouds: The status of ground-based observational methods. Bull. Amer. Meteor. Soc., 89, 15491562, doi:10.1175/2008BAMS2378.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Unal, C. M. H., 2015: High-resolution raindrop size distribution retrieval based on the Doppler spectrum in the case of slant profiling radar. J. Atmos. Oceanic Technol., 32, 11911208, doi:10.1175/JTECH-D-13-00225.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Unal, C. M. H., and D. N. Moisseev, 2004: Combined Doppler and polarimetric radar measurements: Correction for spectrum aliasing and nonsimultaneous polarimetric measurements. J. Atmos. Oceanic Technol., 21, 443, doi:10.1175/1520-0426(2004)021<0443:CDAPRM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Unal, C. M. H., Y. Dufournet, T. Otto, and H. Russchenberg, 2012: The new real-time measurement capabilities of the profiling TARA radar. Proc. Seventh European Conf. on Radar in Meteorology and Hydrology (ERAD 2012), Toulouse, France, Météo-France, 199 SP. [Available online at http://www.meteo.fr/cic/meetings/2012/ERAD/short_abs/SP_388_sh_abs.pdf.]

  • Yuter, S. E., and R. A. Houze, 2003: Microphysical modes of precipitation growth determined by S-band vertically pointing radar in orographic precipitation during MAP. Quart. J. Roy. Meteor. Soc., 129, 455476, doi:10.1256/qj.01.216.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1265 759 13
PDF Downloads 342 61 2