Ceilometer-Based Analysis of Shanghai’s Boundary Layer Height (under Rain- and Fog-Free Conditions)

Jie Peng Shanghai Institute of Meteorological Science, Shanghai Meteorological Service, Shanghai, China
Shanghai Key Laboratory of Meteorological and Health, Shanghai Meteorological Service, Shanghai, China

Search for other papers by Jie Peng in
Current site
Google Scholar
PubMed
Close
,
C. S. B. Grimmond Department of Meteorology, University of Reading, Reading, United Kingdom

Search for other papers by C. S. B. Grimmond in
Current site
Google Scholar
PubMed
Close
,
Xinshu Fu Shanghai Institute of Meteorological Science, Shanghai Meteorological Service, Shanghai, China
Shanghai Key Laboratory of Meteorological and Health, Shanghai Meteorological Service, Shanghai, China

Search for other papers by Xinshu Fu in
Current site
Google Scholar
PubMed
Close
,
Yuanyong Chang Shanghai Institute of Meteorological Science, Shanghai Meteorological Service, Shanghai, China
Shanghai Key Laboratory of Meteorological and Health, Shanghai Meteorological Service, Shanghai, China

Search for other papers by Yuanyong Chang in
Current site
Google Scholar
PubMed
Close
,
Guangliang Zhang Fengxian Meteorological Service, Shanghai Meteorological Service, Shanghai, China

Search for other papers by Guangliang Zhang in
Current site
Google Scholar
PubMed
Close
,
Jibing Guo Fengxian Meteorological Service, Shanghai Meteorological Service, Shanghai, China

Search for other papers by Jibing Guo in
Current site
Google Scholar
PubMed
Close
,
Chenyang Tang Fengxian Meteorological Service, Shanghai Meteorological Service, Shanghai, China

Search for other papers by Chenyang Tang in
Current site
Google Scholar
PubMed
Close
,
Jie Gao Shanghai Central Meteorological Observatory, Shanghai Meteorological Service, Shanghai, China

Search for other papers by Jie Gao in
Current site
Google Scholar
PubMed
Close
,
Xiaodong Xu Department of Integrated Observations and Forecasting, Shanghai Meteorological Service, Shanghai, China

Search for other papers by Xiaodong Xu in
Current site
Google Scholar
PubMed
Close
, and
Jianguo Tan Shanghai Institute of Meteorological Science, Shanghai Meteorological Service, Shanghai, China
Shanghai Key Laboratory of Meteorological and Health, Shanghai Meteorological Service, Shanghai, China

Search for other papers by Jianguo Tan in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

To investigate the boundary layer dynamics of the coastal megacity Shanghai, China, backscatter data measured by a Vaisala CL51 ceilometer are analyzed with a modified ideal curve fitting algorithm. The boundary layer height zi retrieved by this method and from radiosondes compare reasonably overall. Analyses of mobile and stationary ceilometer data provide spatial and temporal characteristics of Shanghai’s boundary layer height. The consistency between when the ceilometer is moving and stationary highlights the potential of mobile observations of transects across cities. An analysis of 16 months of zi measured at the Fengxian site in Shanghai reveals that the diurnal variation of zi in the four seasons follows the expected pattern; for all seasons zi starts to increase at sunrise, reflecting the influence of solar radiation. However, the boundary layer height is generally higher in autumn and winter than in summer and spring (mean hourly averaged zi for days with low cloud fraction at 1100–1200 local time are 900, 654, 934, and 768 m for spring, summer, autumn, and winter, respectively). This is attributed to seasonal differences in the dominant meteorological conditions, including the effects of a sea breeze at the near-coastal Fengxian site. Given the success of the retrieval method, other ceilometers installed across Shanghai are now being analyzed to understand more about the spatial dynamics of zi and to investigate in more detail the effects of prevailing mesoscale circulations and their seasonal dynamics.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author e-mail: Prof. Jianguo Tan, tanjg@mail.typhoon.gov.cn

Abstract

To investigate the boundary layer dynamics of the coastal megacity Shanghai, China, backscatter data measured by a Vaisala CL51 ceilometer are analyzed with a modified ideal curve fitting algorithm. The boundary layer height zi retrieved by this method and from radiosondes compare reasonably overall. Analyses of mobile and stationary ceilometer data provide spatial and temporal characteristics of Shanghai’s boundary layer height. The consistency between when the ceilometer is moving and stationary highlights the potential of mobile observations of transects across cities. An analysis of 16 months of zi measured at the Fengxian site in Shanghai reveals that the diurnal variation of zi in the four seasons follows the expected pattern; for all seasons zi starts to increase at sunrise, reflecting the influence of solar radiation. However, the boundary layer height is generally higher in autumn and winter than in summer and spring (mean hourly averaged zi for days with low cloud fraction at 1100–1200 local time are 900, 654, 934, and 768 m for spring, summer, autumn, and winter, respectively). This is attributed to seasonal differences in the dominant meteorological conditions, including the effects of a sea breeze at the near-coastal Fengxian site. Given the success of the retrieval method, other ceilometers installed across Shanghai are now being analyzed to understand more about the spatial dynamics of zi and to investigate in more detail the effects of prevailing mesoscale circulations and their seasonal dynamics.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author e-mail: Prof. Jianguo Tan, tanjg@mail.typhoon.gov.cn
Save
  • Ao, X., C. S. B. Grimmond, D. Liu, Z. Han, P. Hu, Y. Wang, X. Zhen, and J. Tan, 2016a: Radiation fluxes in a business district of Shanghai, China. J. Appl. Meteor. Climatol., 55, 24512468, doi:10.1175/JAMC-D-16-0082.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ao, X., and Coauthors, 2016b: Heat, water and carbon exchanges in the tall megacity of Shanghai: Challenges and results. Int. J. Climatol., 36, 46084624, doi:10.1002/joc.4657.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bianco, L., and J. M. Wilczak, 2002: Convective boundary layer depth: Improved measurement by Doppler radar wind profiler using fuzzy logic methods. J. Atmos. Oceanic Technol., 19, 17451758, doi:10.1175/1520-0426(2002)019<1745:CBLDIM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Blay-Carreras, E., and Coauthors, 2014: Role of the residual layer and large-scale subsidence on the development and evolution of the convective boundary layer. Atmos. Chem. Phys., 14, 45154530, doi:10.5194/acp-14-4515-2014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bond, N. A., 1992: Observations of planetary boundary layer structure in the eastern equatorial Pacific. J. Climate, 5, 699706, doi:10.1175/1520-0442(1992)005<0699:OOPBLS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brooks, I. M., 2003: Finding boundary layer top: Application of a wavelet covariance transform to lidar backscatter profiles. J. Atmos. Oceanic Technol., 20, 10921105, doi:10.1175/1520-0426(2003)020<1092:FBLTAO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cheng, T., and Coauthors, 2015: Seasonal variation and difference of aerosol optical properties in columnar and surface atmospheres over Shanghai. Atmos. Environ., 123, 315326, doi:10.1016/j.atmosenv.2015.05.029.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Eresmaa, N., A. Karppinen, S. M. Joffre, J. Rasane, and H. Talvitie, 2006: Mixing height determination by ceilometer. Atmos. Chem. Phys., 6, 14851493, doi:10.5194/acp-6-1485-2006.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Friedl, M. A., D. Sulla-Menashe, B. Tan, A. Schneider, N. Ramnakutty, A. Sibley, and X. Huang, 2010: MODIS Collection 5 global land cover: Algorithm refinements and characterization of new datasets. Remote Sens. Environ., 114, 168182, doi:10.1016/j.rse.2009.08.016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grimsdell, A. W., and W. M. Angevine, 1998: Convective boundary layer height measurement with wind profilers and comparison to cloud base. J. Atmos. Oceanic Technol., 15, 13311338, doi:10.1175/1520-0426(1998)015<1331:CBLHMW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Guo, J. P., and Coauthors, 2016: The climatology of planetary boundary layer height in China derived from radiosonde and reanalysis data. Atmos. Chem. Phys., 16, 13 30913 319, doi:10.5194/acp-16-13309-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kirkpatrick, S., C. D. Gelatt Jr., and M. P. Vecchi, 1983: Optimization by simulated annealing. Science, 220, 671680, doi:10.1126/science.220.4598.671.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kotthaus, S., E. O’Connor, C. Münkel, C. Charlton-Perez, M. Haeffelin, A. M. Gabey, and C. S. B. Grimmond, 2016: Recommendations for processing atmospheric attenuated backscatter profiles from Vaisala CL31 ceilometers. Atmos. Meas. Tech., 9, 37693791, doi:10.5194/amt-9-3769-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, S., and X.-Z. Liang, 2010: Observed diurnal cycle climatology of planetary boundary layer height. J. Climate, 23, 57905809, doi:10.1175/2010JCLI3552.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Melecio-Vázquez, D., J. González-Cruz, M. Arend, Z. Han, E. Gutierrez, M. Dempsey, and J. Booth, 2015: New York metro-area boundary layer catalogue: Boundary layer height and stability conditions from long-term observations. Ninth Int. Conf. on Urban Climate/12th Symp. on the Urban Environment, Toulouse, France, IAUC and Amer. Meteor. Soc., 9-2. [Available online at http://www.meteo.fr/icuc9/presentations/NOMTM/NOMTM9-2.pdf.]

  • Melfi, S. H., J. D. Spinhirne, and S. H. Chou, 1985: Lidar observations of the vertically organized convection in the planetary boundary layer over the ocean. J. Climate Appl. Meteor., 24, 806821, doi:10.1175/1520-0450(1985)024<0806:LOOVOC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Niyogi, D., 2015: Urban impacts on regional rainfall climatology. Ninth Int. Conf. on Urban Climate/12th Symp. on the Urban Environment, Toulouse, France, IAUC and Amer. Meteor. Soc., UCP9-7. [Available online at http://www.meteo.fr/icuc9/presentations/UCP/UCP9-7.pdf.]

  • Oke, T. R., 1976: The distinction between canopy and boundary-layer urban heat islands. Atmosphere, 14, 268277.

  • Parikh, N. C., and J. A. Parikh, 2002: Systematic tracking of boundary layer aerosols with laser radar. Opt. Laser Technol., 34, 177185, doi:10.1016/S0030-3992(01)00107-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Press, W. H., S. A. Teukolsky, W. T. Vettering, and B. R. Flannery, 1992: Numerical Recipes in FORTRAN: The Art of Scientific Computing. 2nd ed. Cambridge University Press, 933 pp.

  • Sawyer, V., and Z. Li, 2013: Detection, variations and intercomparison of the planetary boundary layer depth from radiosonde, lidar and infrared spectrometer. Atmos. Environ., 79, 518528, doi:10.1016/j.atmosenv.2013.07.019.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seibert, P., F. Beyrich, S.-E. Gryning, S. Joffre, A. Rasmussen, and P. Tercier, 2000: Review and intercomparison of operational methods for the determination of the mixing height. Atmos. Environ., 34, 10011027, doi:10.1016/S1352-2310(99)00349-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seidel, D. J., C. O. Ao, and K. Li, 2010: Estimating climatological planetary boundary layer heights from radiosonde observations: Comparison of methods and uncertainty analysis. J. Geophys. Res., 115, D16113, doi:10.1029/2009JD013680.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shanghai Changwang Meteotech Co., 2015: GTS1 digital radiosonde. Accessed 10 June 2015. [Available online at http://www.cwqx.com/product_h/radiosonde.htm.]

  • Steyn, D. G., M. Baldi, and R. M. Hoff, 1999: The detection of mixed layer depth and entrainment zone thickness from lidar backscatter profiles. J. Atmos. Oceanic Technol., 16, 953959, doi:10.1175/1520-0426(1999)016<0953:TDOMLD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stull, R. B., 1988: An Introduction to Boundary Layer Meteorology. Kluwer Academic 666 pp.</Bok>

    • Crossref
    • Export Citation
  • Tsaknakis, G., A. Papayannis, P. Kokkalis, V. Amiridis, H. D. Kambezidis, R. E. Mamouri, G. Georgoussis, and G. Avdikos, 2011: Inter-comparison of lidar and ceilometer retrievals for aerosol and Planetary Boundary Layer profiling over Athens, Greece. Atmos. Meas. Tech., 4, 12611273, doi:10.5194/amt-4-1261-2011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vickers, D., and L. Mahrt, 2004: Evaluating formations of stable boundary layer height. J. Appl. Meteor., 43, 17361749, doi:10.1175/JAM2160.1.

  • Wang, Z., X. Cao, L. Zhang, J. Notholt, B. Zhou, R. Liu, and B. Zhang, 2012: Lidar measurement of planetary boundary layer height and comparison with microwave profiling radiometer observation. Atmos. Meas. Tech., 5, 19651972, doi:10.5194/amt-5-1965-2012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zeng, X., M. A. Brunke, M. Zhou, C. Fairall, N. Bond, and D. H. Lenschow, 2004: Marine atmospheric boundary layer height over the eastern Pacific: Data analysis and model evaluation. J. Climate, 17, 41594170, doi:10.1175/JCLI3190.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zilitinkevich, S., and A. Baklanov, 2002: Calculation of the height of the stable boundary layer in practical applications. Bound.-Layer Meteor., 105, 389409, doi:10.1023/A:1020376832738.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 2618 1555 35
PDF Downloads 548 102 0