Impact Assessment of Himawari-8 AHI Data Assimilation in NCEP GDAS/GFS with GSI

Zaizhong Ma Joint Center for Satellite and Data Assimilation, and I. M. Systems Group, Inc., College Park, Maryland

Search for other papers by Zaizhong Ma in
Current site
Google Scholar
PubMed
Close
,
Eric S. Maddy Joint Center for Satellite and Data Assimilation, College Park, Maryland, and Riverside Technology, Inc., Fort Collins, Colorado

Search for other papers by Eric S. Maddy in
Current site
Google Scholar
PubMed
Close
,
Banglin Zhang I. M. Systems Group, Inc., College Park, Maryland

Search for other papers by Banglin Zhang in
Current site
Google Scholar
PubMed
Close
,
Tong Zhu Joint Center for Satellite and Data Assimilation, College Park, Maryland

Search for other papers by Tong Zhu in
Current site
Google Scholar
PubMed
Close
, and
Sid Ahmed Boukabara Joint Center for Satellite and Data Assimilation, and NOAA/National Environmental Satellite, Data, and Information Service, College Park, Maryland

Search for other papers by Sid Ahmed Boukabara in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

As the first of the next-generation geostationary meteorological satellites, Himawari-8 was successfully launched in October 2014 by the Japan Meteorological Agency (JMA) and placed over the western Pacific Ocean domain at 140.7°E. It carries the Advanced Himawari Imager (AHI), which provides full-disk images of Earth at 16 bands in the visible and infrared domains every 10 min. Efforts are currently ongoing at the National Oceanic and Atmospheric Administration (NOAA)/National Environmental Satellite, Data, and Information Service (NESDIS)/Center for Satellite Applications and Research (STAR) to assimilate Himawari-8 AHI radiance measurements into the National Centers for Environmental Prediction (NCEP) Gridpoint Statistical Interpolation analysis system (GSI). All software development within the GSI to allow for assimilation of Himawari-8 AHI radiance has been completed.

This study reports on the assessment of AHI preassimilation data quality by comparing observed clear-sky ocean-only radiances to those simulated using collocated ECMWF analysis, as well as describing procedures implemented for quality control. The impact of the AHI data assimilation on the resulting analyses and forecasts is then assessed using the NCEP Global Forecast System (GFS). A preliminary assessment of the assimilation of AHI data from infrared water vapor channels and atmospheric motion vectors (AMVs) on top of the current global observing system shows neutral to marginal positive impact on analysis and forecast skill relative to an assimilation without AHI data. The main positive impact occurs for short- to medium-range forecasts of global upper-tropospheric water vapor. The results demonstrate the feasibility of direct assimilation of AHI radiances and highlight how humidity information can be extracted within the assimilation system.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author e-mail: Zaizhong Ma, zaizhong.ma@noaa.gov

Abstract

As the first of the next-generation geostationary meteorological satellites, Himawari-8 was successfully launched in October 2014 by the Japan Meteorological Agency (JMA) and placed over the western Pacific Ocean domain at 140.7°E. It carries the Advanced Himawari Imager (AHI), which provides full-disk images of Earth at 16 bands in the visible and infrared domains every 10 min. Efforts are currently ongoing at the National Oceanic and Atmospheric Administration (NOAA)/National Environmental Satellite, Data, and Information Service (NESDIS)/Center for Satellite Applications and Research (STAR) to assimilate Himawari-8 AHI radiance measurements into the National Centers for Environmental Prediction (NCEP) Gridpoint Statistical Interpolation analysis system (GSI). All software development within the GSI to allow for assimilation of Himawari-8 AHI radiance has been completed.

This study reports on the assessment of AHI preassimilation data quality by comparing observed clear-sky ocean-only radiances to those simulated using collocated ECMWF analysis, as well as describing procedures implemented for quality control. The impact of the AHI data assimilation on the resulting analyses and forecasts is then assessed using the NCEP Global Forecast System (GFS). A preliminary assessment of the assimilation of AHI data from infrared water vapor channels and atmospheric motion vectors (AMVs) on top of the current global observing system shows neutral to marginal positive impact on analysis and forecast skill relative to an assimilation without AHI data. The main positive impact occurs for short- to medium-range forecasts of global upper-tropospheric water vapor. The results demonstrate the feasibility of direct assimilation of AHI radiances and highlight how humidity information can be extracted within the assimilation system.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author e-mail: Zaizhong Ma, zaizhong.ma@noaa.gov
Save
  • Andersson, E., and M. Masutani, 2010: Collaboration on observing system simulation experiments (Joint OSSE). ECMWF Newsletter, No. 123, ECMWF, Reading, United Kingdom, 14–16.

  • Auligné, T., A. P. McNally, and D. P. Dee, 2007: Adaptive bias correction for satellite data in a numerical weather prediction system. Quart. J. Roy. Meteor. Soc., 133, 631642, doi:10.1002/qj.56.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bessho K., and Coauthors, 2016: An introduction to Himawari-8/9—Japan’s new-generation geostationary meteorological satellites. J. Meteor. Soc. Japan, 94, 511183, doi:10.2151/jmsj.2016-009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bormann, N., K. Salonen, C. Peubey, T. McNally, and C. Lupu, 2012: An overview of the status of the operational assimilation of AMVs at ECMWF. Proc. 11th Int. Wind Workshop, Auckland, New Zealand, EUMETSAT, P60_S4_S02. [Available online at http://www.eumetsat.int/website/wcm/idc/idcplg?IdcService=GET_FILE&dDocName=PDF_CONF_P60_S4_02_BORMANN_V&RevisionSelectionMethod=LatestReleased&Rendition=Web.]

  • Bouttier, F., and G. Kelly, 2001: Observation-system experiments in the ECMWF 4D-Var data assimilation system. Quart. J. Roy. Meteor. Soc., 127, 14691488, doi:10.1002/qj.49712757419.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, Y., Y. Han, P. Delst, and F. Weng, 2013: Assessment of shortwave infrared sea surface reflection and nonlocal thermodynamic equilibrium effects in the Community Radiative Transfer Model using IASI data. J. Atmos. Oceanic Technol., 30, 21522160, doi:10.1175/JTECH-D-12-00267.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cheng, D., 2015: Preliminary assessment of the Advanced Himawari Imager (AHI) measurement onboard Himawari-8 geostationary satellite. Remote Sens. Lett., 6, 637646, doi:10.1080/2150704X.2015.1066522.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dee, D. P., 2005: Bias and data assimilation. Quart. J. Roy. Meteor. Soc., 131, 33233343, doi:10.1256/qj.05.137.

  • Derrien, M., and H. Le Gléau, 2005: MSG/SEVIRI cloud mask and type from SAFNWC. Int. J. Remote Sens., 26, 47074732, doi:10.1080/01431160500166128.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Di, D., Y. Ai, J. Li, W. Shi, and N. Lu, 2016: Geostationary satellite-based 6.7 μm band best water vapor information layer analysis over the Tibetan Plateau. J. Geophys. Res. Atmos., 121, 46004613, doi:10.1002/2016JD024867.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gelaro, R., R. H. Langland, S. Pellerin, and R. Todling, 2010: The THORPEX Observation Impact Intercomparison Experiment. Mon. Wea. Rev., 138, 40094025, doi:10.1175/2010MWR3393.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Heidinger, A. K., A. T. Evan, M. J. Foster, and A. Walther, 2012: A naive Bayesian cloud-detection scheme derived from CALIPSO and applied within PATMOS-x. J. Appl. Meteor. Climatol., 51, 11291144, doi:10.1175/JAMC-D-11-02.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hocking, J., P. N. Francis, and R. Saunders, 2010: Cloud detection in Meteosat Second Generation imagery at the Met Office. Forecasting R&D Tech. Rep. 540, Version 1.0, 40 pp.

  • Kelly, G., and J.-N. Thépaut, 2007: Evaluation of the impact of the space component of the Global Observation System through observing system experiments. ECMWF Newsletter, No. 113, ECMWF, Reading, United Kingdom, 16–28.

  • Kleist, D. T., and K. Ide, 2015a: An OSSE-based evaluation of hybrid variational–ensemble data assimilation for the NCEP GFS. Part I: System description and 3D-hybrid results. Mon. Wea. Rev., 143, 433451, doi:10.1175/MWR-D-13-00351.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kleist, D. T., and K. Ide, 2015b: An OSSE-based evaluation of hybrid variational–ensemble data assimilation for the NCEP GFS. Part II: 4DEnVar and hybrid variants. Mon. Wea. Rev., 143, 452470, doi:10.1175/MWR-D-13-00350.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lahoz, W. A., 1999: Predictive skill of the UKMO Unified Model in the lower stratosphere. Quart. J. Roy. Meteor. Soc., 125, 22052238, doi:10.1002/qj.49712555813.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lu, Q., W. Bell, P. Bauer, N. Bormann, and C. Peubey, 2011: Characterizing the FY-3A microwave temperature sounder using the ECMWF model. J. Atmos. Oceanic Technol., 28, 13731389, doi:10.1175/JTECH-D-10-05008.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McMillin, L. M., and D. S. Crosby, 1984: Theory and validation of the multiple window sea surface temperature technique. J. Geophys. Res., 89, 36553661, doi:10.1029/JC089iC03p03655.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Oyama, R., 2010: Upgrade of atmospheric motion vector derivation algorithms at JMA/MSC. JMA Meteorological Satellite Center Tech. Note 54, 32 pp.

  • Qin, Z., X. Zou, and F. Weng, 2013: Evaluating added benefits of assimilating GOES imager radiance data in GSI for coastal QPFs. Mon. Wea. Rev., 141, 7592, doi:10.1175/MWR-D-12-00079.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rabier, F., H. Järvinen, E. Klinker, J.-F. Mahfouf, and A. Simmons, 2000: The ECMWF operational implementation of four-dimensional variational assimilation. I: Experimental results with simplified physics. Quart. J. Roy. Meteor. Soc., 126, 11431170, doi:10.1002/qj.49712656415.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reale, O., J. Terry, M. Masutani, E. Andersson, L. P. Riishojgaard, and J. C. Jusem, 2007: Preliminary evaluation of the European Centre for Medium-Range Weather Forecasts’ (ECMWF) Nature Run over the tropical Atlantic and African monsoon region. Geophys. Res. Lett., 34, L22810, doi:10.1029/2007GL031640.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Salonen, K., J. Cotton, N. Bormann, and M. Forsythe, 2015: Characterizing AMV height-assignment error by comparing best-fit pressure statistics from the Met Office and ECMWF data assimilation systems. J. Appl. Meteor. Climatol., 54, 225242, doi:10.1175/JAMC-D-14-0025.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schmit, T., M. M. Gunshor, W. P. Menzel, J. J. Gurka, J. Li, and A. S. Bachmeier, 2005: Introducing the next-generation Advanced Baseline Imager on GOES-R. Bull. Amer. Meteor. Soc., 86, 10791096, doi:10.1175/BAMS-86-8-1079.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schmit, T., J. Li, J. Li, W. F. Feltz, J. J. Gurka, M. D. Goldberg, and K. J. Schrab, 2008: The GOES-R Advanced Baseline Imager and the continuation of current sounder products. J. Appl. Meteor. Climatol., 47, 26962711, doi:10.1175/2008JAMC1858.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stengel, M., P. Undén, M. Lindskog, P. Dahlgren, N. Gustafsson, and R. Bennartz, 2009: Assimilation of SEVIRI infrared radiances with HIRLAM 4D-Var. Quart. J. Roy. Meteor. Soc., 135, 21002109, doi:10.1002/qj.501.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Szyndel, M. D. E., J.-N. Thépaut, and G. Kelly, 2005: Evaluation of potential benefit of SEVIRI water vapour radiance data from Meteosat-8 into global numerical weather prediction analyses. Atmos. Sci. Lett., 6, 105111, doi:10.1002/asl.98.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, X., D. Parrish, D. Kleist, and J. Whitaker, 2013: GSI 3DVar-based ensemble–variational hybrid data assimilation for NCEP Global Forecast System: Single-resolution experiments. Mon. Wea. Rev., 141, 40984117, doi:10.1175/MWR-D-12-00141.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weng, F., 2007: Advances in radiative transfer modeling in support of satellite data assimilation. J. Atmos. Sci., 64, 37993807, doi:10.1175/2007JAS2112.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zapotocny, T., W. P. Menzel, J. A. Jung, and J. P. Nelson III, 2005: A four-season impact study of rawinsonde, GOES, and POES data in the Eta Data Assimilation System. Part II: Contribution of the components. Wea. Forecasting, 20, 178198, doi:10.1175/WAF838.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhu, Y., J. Derber, A. Collard, D. Dee, R. Treadon, G. Gayno, and J. A. Jung, 2014: Enhanced radiance bias correction in the National Centers for Environmental Prediction’s Gridpoint Statistical Interpolation data assimilation system. Quart. J. Roy. Meteor. Soc., 140, 14791492, doi:10.1002/qj.2233.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zou, X., Z. Qin, and Y. Zheng, 2015: Improved tropical storm forecasts with GOES-13/15 imager radiance assimilation and asymmetric vortex initialization in HWRF. Mon. Wea. Rev., 143, 24852505, doi:10.1175/MWR-D-14-00223.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 2409 1114 28
PDF Downloads 1414 205 19