Rain Evaporation Rate Estimates from Dual-Wavelength Lidar Measurements and Intercomparison against a Model Analytical Solution

S. Lolli Joint Center for Earth Systems Technology, University of Maryland, Baltimore County, Baltimore, Maryland

Search for other papers by S. Lolli in
Current site
Google Scholar
PubMed
Close
,
P. Di Girolamo Scuola di Ingegneria, Università degli studi della Basilicata, Potenza, Italy

Search for other papers by P. Di Girolamo in
Current site
Google Scholar
PubMed
Close
,
B. Demoz Joint Center for Earth Systems Technology, University of Maryland, Baltimore County, Baltimore, Maryland

Search for other papers by B. Demoz in
Current site
Google Scholar
PubMed
Close
,
X. Li GESTAR, NASA GSFC, Greenbelt, Maryland

Search for other papers by X. Li in
Current site
Google Scholar
PubMed
Close
, and
E. J. Welton Code 612, NASA GSFC, Greenbelt, Maryland

Search for other papers by E. J. Welton in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Rain evaporation, while significantly contributing to moisture and heat cloud budgets, is a still poorly understood process with few measurements presently available. Multiwavelength lidars, widely employed in aerosols and clouds studies, can also provide useful information on the microphysical characteristics of light precipitation, for example, drizzle and virga. In this paper, lidar measurements of the median volume raindrop diameter and rain evaporation rate profiles are compared with a model analytical solution. The intercomparison reveals good agreement between the model and observations, with a correlation between the profiles up to 65% and a root-mean-square error up to 22% with a 5% bias. Larger discrepancies are due to radiosonde soundings different air masses and model assumptions no more valid along the profile as nonsteady atmosphere and/or appearance of collision–coalescence processes. Nevertheless, this study shares valuable information to better characterize the rain evaporation processes.

Denotes content that is immediately available upon publication as open access.

Additional affiliation: Consiglio Nazionale Delle Ricerche, Istituto di Metodologie per l’Analisi Ambientale, Potenza, Italy.

Publisher’s Note: This article was revised on 21 April 2017 to correct the first author’s additional affiliation, and include higher resolution versions of Figs. 2, 5, 6, 8, and 9 that weren’t included when originally published.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author e-mail: Simone Lolli, slolli@umbc.edu

Abstract

Rain evaporation, while significantly contributing to moisture and heat cloud budgets, is a still poorly understood process with few measurements presently available. Multiwavelength lidars, widely employed in aerosols and clouds studies, can also provide useful information on the microphysical characteristics of light precipitation, for example, drizzle and virga. In this paper, lidar measurements of the median volume raindrop diameter and rain evaporation rate profiles are compared with a model analytical solution. The intercomparison reveals good agreement between the model and observations, with a correlation between the profiles up to 65% and a root-mean-square error up to 22% with a 5% bias. Larger discrepancies are due to radiosonde soundings different air masses and model assumptions no more valid along the profile as nonsteady atmosphere and/or appearance of collision–coalescence processes. Nevertheless, this study shares valuable information to better characterize the rain evaporation processes.

Denotes content that is immediately available upon publication as open access.

Additional affiliation: Consiglio Nazionale Delle Ricerche, Istituto di Metodologie per l’Analisi Ambientale, Potenza, Italy.

Publisher’s Note: This article was revised on 21 April 2017 to correct the first author’s additional affiliation, and include higher resolution versions of Figs. 2, 5, 6, 8, and 9 that weren’t included when originally published.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author e-mail: Simone Lolli, slolli@umbc.edu
Save
  • Bedard, A. J., Jr., 2003: Aviation weather hazards. Encyclopedia of Atmospheric Science, J. R. Holton, J. A. Pyle, and J. A. Curry, Eds., Vol. 1, Academic Press, 166–177.

    • Crossref
    • Export Citation
  • Blanchard, D. C., 1953: Raindrop size-distribution in Hawaiian rains. J. Meteor., 10, 457473, doi:10.1175/1520-0469(1953)010<0457:RSDIHR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bringi, V. N., and V. Chandrasekar, 2001: Polarimetric Doppler Weather Radar: Principles and Applications. Cambridge University Press, 636 pp.

    • Crossref
    • Export Citation
  • Campbell, J. R., D. Hlavka, E. Welton, C. Flynn, D. Turner, J. Spinhirne, V. Scott, and I. Hwang, 2002: Full-time, eye-safe cloud and aerosol lidar observation at Atmospheric Radiation Measurement program sites: Instrument and data processing. J. Atmos. Oceanic Technol., 19, 431442, doi:10.1175/1520-0426(2002)019<0431:FTESCA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Demoz, B., D. Starr, D. Whiteman, K. Evans, D. Hlavka, and R. Peravali, 2000: Raman LIDAR detection of cloud base. Geophys. Res. Lett., 27, 18991902, doi:10.1029/1999GL010941.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Di Girolamo, P., R. V. Gagliardi, G. Pappalardo, N. Spinelli, R. Velotta, and V. Berardi, 1995: Two wavelength lidar analysis of stratospheric aerosol size distribution. J. Aerosp. Sci., 26, 9891001, doi:10.1016/0021-8502(95)00025-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Di Girolamo, P., D. Summa, and R. Ferretti, 2009a: Multiparameter Raman lidar measurements for the characterization of a dry stratospheric intrusion event. J. Atmos. Oceanic Technol., 26, 17421762, doi:10.1175/2009JTECHA1253.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Di Girolamo, P., D. Summa, R.-F. Lin, T. Maestri, R. Rizzi, and G. Masiello, 2009b: UV Raman lidar measurements of relative humidity for the characterization of cirrus cloud microphysical properties. Atmos. Chem. Phys., 9, 87998811, doi:10.5194/acp-9-8799-2009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Di Girolamo, P., D. Summa, M. Cacciani, E. G. Norton, G. Peters, and Y. Dufournet, 2012a: Lidar and radar measurements of the melting layer: Observations of dark and bright band phenomena. Atmos. Chem. Phys., 12, 41434157, doi:10.5194/acp-12-4143-2012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Di Girolamo, P., D. Summa, R. Bhawar, T. Di Lorio, M. Cacciani, I. Veselovskii, O. Dubovik, and A. Kolgotin, 2012b: Raman lidar observations of a Saharan dust outbreak event: Characterization of the dust optical properties and determination of particle size and microphysical parameters. Atmos. Environ., 50, 6678, doi:10.1016/j.atmosenv.2011.12.061.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gori, E. G., and J. Joss, 1980: Changes of shape of raindrop size distributions simultaneously observed along a mountain slope. J. Rech. Atmos., 14, 239300.

    • Search Google Scholar
    • Export Citation
  • Kalthoff, N., and Coauthors, 2011: The dependence of convection-related parameters on surface and boundary-layer conditions over complex terrain. Quart. J. Roy. Meteor. Soc., 137, 7080, doi:10.1002/qj.686.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Leary, C. A., and R. A. Houze Jr., 1979: Melting and evaporation of hydrometeors in precipitation from the anvil clouds of deep tropical convection. J. Atmos. Sci., 36, 669679, doi:10.1175/1520-0469(1979)036<0669:MAEOHI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Levin, Z., G. Feingold, S. Tzivion, and A. Waldvogel, 1991: The evolution of raindrop spectra: Comparisons between modeled and observed spectra along a mountain slope in Switzerland. J. Appl. Meteor., 30, 893900, doi:10.1175/1520-0450(1991)030<0893:TEORSC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, X., and R. Srivastava, 2001: An analytical solution for raindrop evaporation and its application to radar rainfall measurements. J. Appl. Meteor., 40, 16071616, doi:10.1175/1520-0450(2001)040<1607:AASFRE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, X., W.-K. Tao, A. P. Khain, J. Simpson, and D. E. Johnson, 2009: Sensitivity of a cloud-resolving model to bulk and explicit bin microphysical schemes. Part II: Cloud microphysics and storm dynamics interactions. J. Atmos. Sci., 66, 2240, doi:10.1175/2008JAS2647.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lolli, S., L. Sauvage, S. Loaec, and M. Lardier, 2011: EZ Lidar™: A new compact autonomous eye-safe scanning aerosol Lidar for extinction measurements and PBL height detection. Validation of the performances against other instruments and intercomparison campaigns. Opt. Pura Apl., 44 (1), 3341.

    • Search Google Scholar
    • Export Citation
  • Lolli, S., E. J. Welton, and J. R. Campbell, 2013a: Evaluating light rain drop size estimates from multiwavelength Micropulse Lidar Network profiling. J. Atmos. Oceanic Technol., 30, 27982807, doi:10.1175/JTECH-D-13-00062.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lolli, S., A. Delaval, C. Loth, A. Garnier, and P. H. Flamant, 2013b: 0.355-micrometer direct detection wind lidar under testing during a field campaign in consideration of ESA’s ADM-Aeolus mission. Atmos. Meas. Tech., 6, 33493358, doi:10.5194/amt-6-3349-2013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lolli, S., E. J. Welton, J. R. Campbell, E. Eloranta, B. N. Holben, B. N. Chew, and S. V. Salinas, 2014a: High Spectral Resolution Lidar and MPLNET Micro Pulse Lidar aerosol optical property retrieval intercomparison during the 2012 7-SEAS field campaign at Singapore. Lidar Technologies, Techniques, and Measurements for Atmospheric Remote Sensing, X, U. N. Singh and G. Pappalardo, Eds., International Society for Optical Engineering (SPIE Proceedings, Vol. 9246), 92460C, doi:10.1117/12.2067812.

    • Crossref
    • Export Citation
  • Lolli, S., E. J. Welton, A. Benedetti, L. Jones, M. Suttie, and S.-H. Wang, 2014b: MPLNET lidar data assimilation in the ECMWF MACC-II Aerosol system: Evaluation of model performances at NCU lidar station. Lidar Technologies, Techniques, and Measurements for Atmospheric Remote Sensing, X, U. N. Singh and G. Pappalardo, Eds., International Society for Optical Engineering (SPIE Proceedings, Vol. 9246), 92460I, doi:10.1117/12.2068201.

    • Crossref
    • Export Citation
  • Lolli, S., J. Lewis, J. R. Campbell, Y. Gu, and E. Welton, 2016: Cirrus cloud radiative characteristics from continuous MPLNET profiling at GSFC in 2012. Opt. Pura Apl., 49, 16, doi:10.7149/OPA.49.1.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marshall, J. S., and W. Mc K. Palmer, 1948: The distribution of raindrops with size. J. Atmos. Sci., 5, 165166, doi:10.1175/1520-0469(1948)005<0165:TDORWS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Morrison, H. G., G. Thompson, and V. Tatarskii, 2009: Impact of cloud microphysics on the development of trailing stratiform precipitation in a simulated squall line: Comparison of one- and two-moment schemes. Mon. Wea. Rev., 137, 9911007, doi:10.1175/2008MWR2556.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • O’Connor, E. J., R. J. Hogan, and A. J. Illingworth, 2005: Retrieving stratocumulus drizzle parameters using Doppler radar and lidar. J. Appl. Meteor., 44, 1427, doi:10.1175/JAM-2181.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Spinhirne, J. D., 1993: Micro pulse lidar. IEEE Trans. Geosci. Remote Sens., 31, 4855, doi:10.1109/36.210443.

  • Spinhirne, J. D., J. A. R. Rall, and V. S. Scott, 1995: Compact eye-safe lidar system. Rev. Laser Eng., 23, 112118, doi:10.2184/lsj.23.112.

  • Tan, F., and Coauthors, 2014: Variation in daytime troposphereic aerosol via LIDAR and sunphotometer measurements in Penang, Malaysia. AIP Conf. Proc., 1588, 286, doi:10.1063/1.4866962.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ulbrich, C. W., and D. Atlas, 1998: Rainfall microphysics and radar properties: Analysis methods for drop size spectra. J. Appl. Meteor., 37, 912923, doi:10.1175/1520-0450(1998)037<0912:RMARPA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Welton, E. J., and Coauthors, 2002: Measurements of aerosol vertical profiles and optical properties during INDOEX 1999 using micropulse lidars. J. Geophys. Res., 107, 8019, doi:10.1029/2000JD000038.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Westbrook, C. D., R. J. Hogan, E. J. O’Connor, and A. J. Illingworth, 2010: Estimating drizzle drop size and precipitation rate using two-colour lidar measurements. Atmos. Meas. Tech., 3, 671681, doi:10.5194/amt-3-671-2010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Worden, J., and Coauthors, 2007: Importance of rain evaporation and continental convection in the tropical water cycle. Nature, 445, 528532, doi:10.1038/nature05508.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wulfmeyer, V., and Coauthors, 2011: The Convective and Orographically-induced Precipitation Study (COPS): The scientific strategy, the field phase, and research highlights. Quart. J. Roy. Meteor. Soc., 137, 330, doi:10.1002/qj.752.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xie, X., R. Evaristo, S. Troemel, P. Saavedra, C. Simmer, and A. Ryzhkov, 2016: Radar observation of evaporation and implications for quantitative precipitation and cooling rate estimation. J. Atmos. Oceanic Technol., 33, 17791792, doi:10.1175/JTECH-D-15-0244.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1788 1137 35
PDF Downloads 471 89 2