Submesoscale Eddies in the Taiwan Strait Observed by High-Frequency Radars: Detection Algorithms and Eddy Properties

Yeping Lai School of Electronic Information, Wuhan University, Wuhan, China

Search for other papers by Yeping Lai in
Current site
Google Scholar
PubMed
Close
,
Hao Zhou School of Electronic Information, Wuhan University, Wuhan, China

Search for other papers by Hao Zhou in
Current site
Google Scholar
PubMed
Close
,
Jing Yang School of Electronic Information, Wuhan University, Wuhan, China

Search for other papers by Jing Yang in
Current site
Google Scholar
PubMed
Close
,
Yuming Zeng School of Electronic Information, Wuhan University, Wuhan, China

Search for other papers by Yuming Zeng in
Current site
Google Scholar
PubMed
Close
, and
Biyang Wen School of Electronic Information, Wuhan University, Wuhan, China

Search for other papers by Biyang Wen in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

This study compared the efficiencies of two widely used automatic eddy detection algorithms—that is, the winding-angle (WA) method and the vector geometry (VG) method—and investigated the submesoscale eddy properties using surface current observations derived from high-frequency radars (HFRs) in the Taiwan Strait. The results showed that the WA method using the streamline and the VG method based on the streamfunction field have almost the same capacity for identifying eddies, but the former is more competent than the latter in capturing the eddy size. The two algorithms simultaneously identified 1080 submesoscale eddies, with the centers and boundaries determined only by the WA method, and they were further used to investigate the eddy properties. In general, no significant difference was observed between the cyclonic and anticyclonic eddies in terms of radius, life span, and kinematics, as well as the evolution during their life cycles. The typical radius of the eddy in this region was 3–18 km. And a strong correlation was observed between the life span and the radius. The spatial distribution of the eddies indicated that topography played a significant role in the generation of the eddies. And the trajectories of the eddies suggested that all the eddies in this area mostly tended to move southeastward. Statistically, three different stages of the eddy’s life span could be identified by the significant growth and decay of the radius and the mean kinetic energy. This study shows the great capability of HFRs in oceanography research and applications, especially for observing the submesocale dynamics.

Denotes content that is immediately available upon publication as open access.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author e-mail: Hao Zhou, zhou.h@whu.edu.cn

Abstract

This study compared the efficiencies of two widely used automatic eddy detection algorithms—that is, the winding-angle (WA) method and the vector geometry (VG) method—and investigated the submesoscale eddy properties using surface current observations derived from high-frequency radars (HFRs) in the Taiwan Strait. The results showed that the WA method using the streamline and the VG method based on the streamfunction field have almost the same capacity for identifying eddies, but the former is more competent than the latter in capturing the eddy size. The two algorithms simultaneously identified 1080 submesoscale eddies, with the centers and boundaries determined only by the WA method, and they were further used to investigate the eddy properties. In general, no significant difference was observed between the cyclonic and anticyclonic eddies in terms of radius, life span, and kinematics, as well as the evolution during their life cycles. The typical radius of the eddy in this region was 3–18 km. And a strong correlation was observed between the life span and the radius. The spatial distribution of the eddies indicated that topography played a significant role in the generation of the eddies. And the trajectories of the eddies suggested that all the eddies in this area mostly tended to move southeastward. Statistically, three different stages of the eddy’s life span could be identified by the significant growth and decay of the radius and the mean kinetic energy. This study shows the great capability of HFRs in oceanography research and applications, especially for observing the submesocale dynamics.

Denotes content that is immediately available upon publication as open access.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author e-mail: Hao Zhou, zhou.h@whu.edu.cn
Save
  • Amante, C., and B. W. Eakins, 2009: ETOPO1 1 arc-minute global relief model: Procedures, data sources and analysis. NOAA Tech. Memo. NES NGDC-24, 19 pp.

  • Bassin, C. J., L. Washburn, M. Brzezinski, and E. McPhee-Shaw, 2005: Sub-mesoscale coastal eddies observed by high frequency radar: A new mechanism for delivering nutrients to kelp forests in the Southern California Bight. Geophys. Res. Lett., 32, L12604, doi:10.1029/2005GL023017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chaigneau, A., and O. Pizarro, 2005: Eddy characteristics in the eastern South Pacific. J. Geophys. Res., 110, C06005, doi:10.1029/2004JC002815.

    • Search Google Scholar
    • Export Citation
  • Chaigneau, A., A. Gizolme, and C. Grados, 2008: Mesoscale eddies off Peru in altimeter records: Identification algorithms and eddy spatio-temporal patterns. Prog. Oceanogr., 79, 106119, doi:10.1016/j.pocean.2008.10.013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chavanne, C. P., and P. Klein, 2010: Can oceanic submesoscale processes be observed with satellite altimetry? Geophys. Res. Lett., 37, L22602, doi:10.1029/2010GL045057.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chelton, D. B., M. G. Schlax, and R. M. Samelson, 2011: Global observations of nonlinear mesoscale eddies. Prog. Oceanogr., 91, 167216, doi:10.1016/j.pocean.2011.01.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, G., Y. Hou, and X. Chu, 2011: Mesoscale eddies in the South China Sea: Mean properties, spatiotemporal variability, and impact on thermohaline structure. J. Geophys. Res., 116, C06018, doi:10.1029/2010JC006716.

    • Search Google Scholar
    • Export Citation
  • Chérubin, L., and P. Richardson, 2007: Caribbean current variability and the influence of the Amazon and Orinoco freshwater plumes. Deep-Sea Res. I, 54, 14511473, doi:10.1016/j.dsr.2007.04.021.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Corredor, J. E., J. M. Morell, J. M. Lopez, J. E. Capella, and R. A. Armstrong, 2004: Cyclonic eddy entrains Orinoco River Plume in eastern Caribbean. Eos, Trans. Amer. Geophys. Union, 85, 197202, doi:10.1029/2004EO200001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ebling, J., and G. Scheuermann, 2003: Clifford convolution and pattern matching on vector fields. Proceedings of the 14th IEEE Visualization 2003 (VIS’03), IEEE, 193–200, doi:10.1109/VISUAL.2003.1250372.

    • Crossref
    • Export Citation
  • Fang, F., and R. Morrow, 2003: Evolution, movement and decay of warm-core Leeuwin Current eddies. Deep-Sea Res. II, 50, 22452261, doi:10.1016/S0967-0645(03)00055-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Guo, D., 2004: Automated feature extraction in oceanographic visualization. M. S. thesis, Dept. of Ocean Engineering, Massachusetts Institute of Technology, 147 pp. [Available online at http://hdl.handle.net/1721.1/33438.]

  • Heiberg, E., T. Ebbers, L. Wigstrom, and M. Karlsson, 2003: Three-dimensional flow characterization using vector pattern matching. IEEE Trans. Visualization Comput. Graphics, 9, 313319, doi:10.1109/TVCG.2003.1207439.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hu, J., H. Kawamura, C. Li, H. Hong, and Y. Jiang, 2010: Review on current and seawater volume transport through the Taiwan Strait. J. Oceanogr., 66, 591610, doi:10.1007/s10872-010-0049-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Isern-Fontanet, J., E. García-Ladona, and J. Font, 2003: Identification of marine eddies from altimetric maps. J. Atmos. Oceanic Technol., 20, 772778, doi:10.1175/1520-0426(2003)20<772:IOMEFA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jeong, J., and F. Hussain, 1995: On the identification of a vortex. J. Fluid Mech., 285, 6994, doi:10.1017/S0022112095000462.

  • Kim, S. Y., 2010: Observations of submesoscale eddies using high-frequency radar-derived kinematic and dynamic quantities. Cont. Shelf Res., 30, 16391655, doi:10.1016/j.csr.2010.06.011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lai, Y., H. Zhou, and B. Wen, 2017: Surface current characteristics in the Taiwan Strait observed by high-frequency radars. IEEE J. Oceanic Eng., 42, 449457, doi:10.1109/JOE.2016.2572818.

    • Crossref
    • Export Citation
  • Li, L., W. D. Nowlin, and S. Jilan, 1998: Anticyclonic rings from the Kuroshio in the South China Sea. Deep-Sea Res. I, 45, 14691482, doi:10.1016/S0967-0637(98)00026-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lin, X., C. Dong, D. Chen, Y. Liu, J. Yang, B. Zou, and Y. Guan, 2015: Three-dimensional properties of mesoscale eddies in the South China Sea based on eddy-resolving model output. Deep-Sea Res. I, 99, 4664, doi:10.1016/j.dsr.2015.01.007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, Y., C. Dong, Y. Guan, D. Chen, J. McWilliams, and F. Nencioli, 2012: Eddy analysis in the subtropical zonal band of the North Pacific Ocean. Deep-Sea Res. I, 68, 5467, doi:10.1016/j.dsr.2012.06.001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, Y. G., R. H. Weisberg, C. R. Merz, S. Lichtenwalner, and G. J. Kirkpatrick, 2010: HF radar performance in a low-energy environment: CODAR seasonde experience on the West Florida Shelf. J. Atmos. Oceanic Technol., 27, 16891710, doi:10.1175/2010JTECHO720.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, Y. G., R. H. Weisberg, and C. R. Merz, 2014: Assessment of CODAR SeaSonde and WERA HF radars in mapping surface currents on the West Florida shelf. J. Atmos. Oceanic Technol., 31, 13631382, doi:10.1175/JTECH-D-13-00107.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mcwilliams, J. C., 1990: The vortices of two-dimensional turbulence. J. Fluid Mech., 219, 361385, doi:10.1017/S0022112090002981.

  • Mcwilliams, J. C., 2008: The nature and consequences of oceanic eddies. Ocean Modeling in an Eddying Regime, Geophys. Monogr., Vol. 177, Amer. Geophys. Union, 5–15, doi:10.1029/177GM03.

    • Crossref
    • Export Citation
  • Merz, C. R., Y. Liu, K.-W. Gurgel, L. Petersen, and R. H. Weisberg, 2015: Effect of radio frequency interference (RFI) noise energy on WERA performance using the “Listen Before Talk” adaptive noise procedure on the West Florida shelf. Coastal Ocean Observing Systems, Y. Liu, H. Kerkering, and R. H. Weisberg, Eds., Academic Press, 229–247, doi:10.1016/B978-0-12-802022-7.00013-4.

    • Crossref
    • Export Citation
  • Morrow, R., J.-R. Donguy, A. Chaigneau, and S. R. Rintoul, 2004: Cold-core anomalies at the subantarctic front, south of Tasmania. Deep-Sea Res. I, 51, 14171440, doi:10.1016/j.dsr.2004.07.005.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nan, F., Z. He, H. Zhou, and D. Wang, 2011: Three long-lived anticyclonic eddies in the northern South China Sea. J. Geophys. Res., 116, C05002, doi:10.1029/2010JC006790.

    • Search Google Scholar
    • Export Citation
  • Nencioli, F., V. S. Kuwahara, T. D. Dickey, Y. M. Rii, and R. R. Bidigare, 2008: Physical dynamics and biological implications of a mesoscale eddy in the lee of Hawai’i: Cyclone Opal observations during E-FLUX III. Deep-Sea Res. II, 55, 12521274, doi:10.1016/j.dsr2.2008.02.003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nencioli, F., C. Dong, T. Dickey, L. Washburn, and J. C. McWilliams, 2010: A vector geometry–based eddy detection algorithm and its application to a high-resolution numerical model product and high-frequency radar surface velocities in the Southern California BIGHT. J. Atmos. Oceanic Technol., 27, 564579, doi:10.1175/2009JTECHO725.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Paduan, J. D., K. C. Kim, M. S. Cook, and F. P. Chavez, 2006: Calibration and validation of direction-finding high-frequency radar ocean surface current observations. IEEE J. Oceanic Eng., 31, 862875, doi:10.1109/JOE.2006.886195.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pomales-Velázquez, L., J. Morell, S. Rodriguez-Abudo, M. Canals, J. Capella, and C. Garcia, 2015: Characterization of mesoscale eddies and detection of submesoscale eddies derived from satellite imagery and HF radar off the coast of southwestern Puerto Rico. Proc. OCEANS 2015 MTS/IEEE Washington, Washington, DC, IEEE, 6 pp.

    • Crossref
    • Export Citation
  • Portela, L. M., 1997: On the identification and classification of vortices. Ph.D thesis, School of Mechanical Engineering, Stanford University, 173 pp.

  • Robinson, S. K., 1991: Coherent motions in the turbulent boundary layer. Annu. Rev. Fluid Mech., 23, 601639, doi:10.1146/annurev.fl.23.010191.003125.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sadarjoen, I. A., and F. H. Post, 1999: Geometric methods for vortex extraction. Data Visualization ’99: Proceedings of the Joint EUROGRAPHICS and IEEE TCVG Symposium on Visualization, E. Gröller, H. Löffelmann, and W. Ribarsky, Eds., Springer, 53–62, doi:10.1007/978-3-7091-6803-5_6.

    • Crossref
    • Export Citation
  • Sadarjoen, I. A., and F. H. Post, 2000: Detection, quantification, and tracking of vortices using streamline geometry. Comput. Graphics, 24, 333341, doi:10.1016/S0097-8493(00)00029-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sadarjoen, I. A., F. H. Post, B. Ma, D. C. Banks, and H. G. Pagendarm, 1998: Selective visualization of vortices in hydrodynamic flows. Proceedings of Visualization ’98, IEEE, 419–422, doi:10.1109/VISUAL.1998.745333.

    • Crossref
    • Export Citation
  • Shen, Z., X. Wu, H. Lin, X. Chen, X. Xu, and L. Li, 2014: Spatial distribution characteristics of surface tidal currents in the southwest of Taiwan Strait. J. Ocean Univ. China, 13, 971978, doi:10.1007/s11802-014-2314-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Simons, R. D., M. M. Nishimoto, L. Washburn, K. S. Brown, and D. A. Siegel, 2015: Linking kinematic characteristics and high concentrations of small pelagic fish in a coastal mesoscale eddy. Deep-Sea Res. I, 100, 3447, doi:10.1016/j.dsr.2015.02.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, G., J. Su, and P. C. Chu, 2003: Mesoscale eddies in the South China Sea observed with altimeter data. Geophys. Res. Lett., 30, 2121, doi:10.1029/2003GL018532.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, X., W. Li, Y. Qi, and G. Han, 2012: Heat, salt and volume transports by eddies in the vicinity of the Luzon strait. Deep-Sea Res. I, 61, 2133, doi:10.1016/j.dsr.2011.11.006.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wei, G., S. Shang, Z. He, Q. Dong, and K. Liu, 2016: Performance of wave-wind detection by portable radar HFSWR OSMAR-S100. Oceanol. Limnol. Sin., 47, 5260, doi:10.11693/hyhz20150400120.

    • Search Google Scholar
    • Export Citation
  • Wen, B., Z. L. H. Zhou, Z. Shi, S. W. X. Wang, H. Yang, and S. Li, 2009: Sea surface currents detection at the eastern China Sea by HF ground wave radar OSMAR-S. Acta Electron. Sin., 37, 27782782.

    • Search Google Scholar
    • Export Citation
  • Zatsepin, A. G., V. I. Baranov, A. A. Kondrashov, A. O. Korzh, V. V. Kremenetskiy, A. G. Ostrovskii, and D. M. Soloviev, 2011: Submesoscale eddies at the caucasus Black Sea shelf and the mechanisms of their generation. Oceanology, 51, 554, doi:10.1134/S0001437011040205.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhou, H., H. Roarty, and B. Wen, 2014: Wave extraction with portable high-frequency surface wave radar OSMAR-S. J. Ocean Univ. China, 13, 957963, doi:10.1007/s11802-014-2363-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhou, H., H. Roarty, and B. Wen, 2015: Wave height measurement in the Taiwan Strait with a portable high frequency surface wave radar. Acta Oceanol. Sin., 34, 7378, doi:10.1007/s13131-015-0599-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1566 775 25
PDF Downloads 573 102 5