Assessment of Radiometric Data from a Buoy in the St. Lawrence Estuary

Simon Bélanger Département de Biologie, Chimie et Géographie, Université du Québec à Rimouski, and BORÉAS, and Québec-Océan, Rimouski, Quebec, Canada

Search for other papers by Simon Bélanger in
Current site
Google Scholar
PubMed
Close
,
Claudia Carrascal-Leal Département de Biologie, Chimie et Géographie, Université du Québec à Rimouski, and BORÉAS, and Québec-Océan, Rimouski, Quebec, Canada

Search for other papers by Claudia Carrascal-Leal in
Current site
Google Scholar
PubMed
Close
,
Thomas Jaegler ARCTUS Inc., Ste-Petronille, Quebec, Canada

Search for other papers by Thomas Jaegler in
Current site
Google Scholar
PubMed
Close
,
Pierre Larouche Institut Maurice-Lamontagne, Fisheries and Oceans Canada, Mont-Joli, Quebec, Canada

Search for other papers by Pierre Larouche in
Current site
Google Scholar
PubMed
Close
, and
Peter Galbraith Institut Maurice-Lamontagne, Fisheries and Oceans Canada, Mont-Joli, Quebec, Canada

Search for other papers by Peter Galbraith in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Fisheries and Oceans Canada maintains a network of scientific buoys in the St. Lawrence estuary and gulf. Among a suite of environmental parameters documented, the in-water upwelling radiance is measured using an ocean color radiometer located underneath the center of the buoy. The shadow effect from the 1.05-m-radius buoy on the measured upwelling radiance is estimated and empirical models to correct for it are proposed. On average, the shading error (i.e., the percent of missing radiance) was and for the 555- and 412-nm channels, respectively. Two analytical models were tested to predict the shading error using measured inherent optical properties, the sun zenith angle, and the fraction of diffuse sky irradiance. Neglecting light scattering led to overestimates of the shading error. In contrast, the bias was removed when the scattering coefficient was accounted for, but the overall error was only barely improved (root-mean-square error ). Empirical relationships based on the uncorrected reflectance ratio measured by the buoy were used to predict both the shading error and the diffuse attenuation of the upwelling radiance, two quantities needed to calculate remote sensing reflectance . Overall, was retrieved with an averaged absolute percent difference ranging from 12% to 20%, which appears adequate for the validation of ocean color data such as the Moderate Resolution Imaging Spectroradiometer (MODIS-Aqua) and Visible Infrared Imaging Radiometer Suite (VIIRS) products in the optically complex waters of the St. Lawrence estuary.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author e-mail: Simon Bélanger, simon_belanger@uqar.ca

Abstract

Fisheries and Oceans Canada maintains a network of scientific buoys in the St. Lawrence estuary and gulf. Among a suite of environmental parameters documented, the in-water upwelling radiance is measured using an ocean color radiometer located underneath the center of the buoy. The shadow effect from the 1.05-m-radius buoy on the measured upwelling radiance is estimated and empirical models to correct for it are proposed. On average, the shading error (i.e., the percent of missing radiance) was and for the 555- and 412-nm channels, respectively. Two analytical models were tested to predict the shading error using measured inherent optical properties, the sun zenith angle, and the fraction of diffuse sky irradiance. Neglecting light scattering led to overestimates of the shading error. In contrast, the bias was removed when the scattering coefficient was accounted for, but the overall error was only barely improved (root-mean-square error ). Empirical relationships based on the uncorrected reflectance ratio measured by the buoy were used to predict both the shading error and the diffuse attenuation of the upwelling radiance, two quantities needed to calculate remote sensing reflectance . Overall, was retrieved with an averaged absolute percent difference ranging from 12% to 20%, which appears adequate for the validation of ocean color data such as the Moderate Resolution Imaging Spectroradiometer (MODIS-Aqua) and Visible Infrared Imaging Radiometer Suite (VIIRS) products in the optically complex waters of the St. Lawrence estuary.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author e-mail: Simon Bélanger, simon_belanger@uqar.ca
Save
  • Antoine, D., P. Guevel, J.-F. Desté, G. Bécu, F. Louis, A. J. Scott, and P. Bardey, 2008: The “BOUSSOLE” buoy—A new transparent-to-swell taut mooring dedicated to marine optics: Design, tests, and performance at sea. J. Atmos. Oceanic Technol., 25, 968989, doi:10.1175/2007JTECHO563.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Antoine, D., D. A. Siegel, T. Kostadinov, S. Maritorena, N. B. Nelson, B. Gentili, V. Vellucci, and N. Guillocheau, 2011: Variability in optical particle backscattering in contrasting bio-optical oceanic regimes. Limnol. Oceanogr., 56, 955973, doi:10.4319/lo.2011.56.3.0955.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Antoine, D., S. B. Hooker, S. Bélanger, A. Matsuoka, and M. Babin, 2013: Apparent optical properties of the Canadian Beaufort Sea—Part 1: Observational overview and water column relationships. Biogeosciences, 10, 44934509, doi:10.5194/bg-10-4493-2013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bailey, S. W., and P. J. Werdell, 2006: A multi-sensor approach for the on-orbit validation of ocean color satellite data products. Remote Sens. Environ., 102, 1223, doi:10.1016/j.rse.2006.01.015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bailey, S. W., B. A. Franz, and P. J. Werdell, 2010: Estimation of near-infrared water-leaving reflectance for satellite ocean color data processing. Opt. Express, 18, 75217527, doi:10.1364/OE.18.007521.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cizmeli, S. A., 2008: Propriétés optiques intrinsèques et apparentes des eaux du golfe et de l’estuaire du Saint-Laurent: Concordance optique, paramétrisation et variabilité spatio-temporelle. Ph.D. thesis, Université de Sherbrooke, 156 pp.

  • Clark, D. K., H. Gordon, K. Voss, Y. Ge, W. Broenkow, and C. Trees, 1997: Validation of atmospheric correction over the oceans. J. Geophys. Res., 102, 17 20917 217, doi:10.1029/96JD03345.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Clark, D. K., and Coauthors, 2003: MOBY, a radiometric buoy for performance monitoring and vicarious calibration of satellite ocean color sensors: Measurement and data analysis protocols. Special topics in ocean optics protocols and appendices, J. L. Mueller, G. S. Fragion, and C. R. McClain, Eds., Vol. VI, Revision 4, Ocean optics protocols for satellite ocean color sensor validation, NASA Tech. Memo. NASA/TM-2003-211621/Rev4-Vol.VI, 3–34.

  • Cleveland, W. S., E. Grosse, and W. M. Shyu, 1992: Local regression models. Statistical Models in S, J. Chambers, and T. Hastie, Eds., Wadsworth & Brooks/Cole, 309–376.

    • Crossref
    • Export Citation
  • D’Alimonte, D., E. B. Shybanov, G. Zibordi, and T. Kajiyama, 2013: Regression of in-water radiometric profile data. Opt. Express, 21, 27 70727 733, doi:10.1364/OE.21.027707.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fuentes-Yaco, C., A. F. Vézina, P. Larouche, C. Vigneau, M. Gosselin, and M. Levasseur, 1997a: Phytoplankton pigment in the Gulf of St. Lawrence, Canada, as determined by the Coastal Zone Color Scanner (CZCS)—Part I: Spatio-temporal variability. Cont. Shelf Res., 17, 14211439, doi:10.1016/S0278-4343(97)00021-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fuentes-Yaco, C., A. F. Vézina, P. Larouche, C. Vigneau, M. Gosselin, and M. Levasseur, 1997b: Phytoplankton pigment in the Gulf of St. Lawrence, Canada, as determined by the Coastal Zone Color Scanner (CZCS)—Part II: Multivariate analysis. Cont. Shelf Res., 17, 14411459, doi:10.1016/S0278-4343(97)00022-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gentili, B., 2016: Cops: C-OPS Processing, version 3.2. R package. [Available online at https://github.com/belasi01/Cops.]

  • Gordon, H. R., and K. Ding, 1992: Self-shading of in-water optical instruments. Limnol. Oceanogr., 37, 491500, doi:10.4319/lo.1992.37.3.0491.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gregg, W. W., and K. L. Carder, 1990: A simple spectral solar irradiance model for cloudless maritime atmospheres. Limnol. Oceanogr., 35, 16571675, doi:10.4319/lo.1990.35.8.1657.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hooker, S. B., J. H. Morrow, and A. Matsuoka, 2013: Apparent optical properties of the Canadian Beaufort Sea—Part 2: The 1% and 1 cm perspective in deriving and validating AOP data products. Biogeosciences, 10, 45114527, doi:10.5194/bg-10-4511-2013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huot, Y., C. A. Brown, and J. J. Cullen, 2007: Retrieval of phytoplankton biomass from simultaneous inversion of reflectance, the diffuse attenuation coefficient, and Sun-induced fluorescence in coastal waters. J. Geophys. Res., 112, C06013, doi:10.1029/2006JC003794.

    • Search Google Scholar
    • Export Citation
  • Kishino, M., M. Takahashi, N. Okami, and S. Ichimura, 1985: Estimation of the spectral absorption coefficients of phytoplankton in the sea. Bull. Mar. Sci., 37, 634642.

    • Search Google Scholar
    • Export Citation
  • Lavender, S. J., M. H. Pinkerton, G. F. Moore, J. Aiken, and D. Blondeau-Patissier, 2005: Modification to the atmospheric correction of SeaWiFS ocean colour images over turbid waters. Cont. Shelf Res., 25, 539555, doi:10.1016/j.csr.2004.10.007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Leathers, R. A., T. V. Downes, and C. D. Mobley, 2001: Self-shading correction for upwelling sea-surface radiance measurements made with buoyed instruments. Opt. Express, 8, 561570, doi:10.1364/OE.8.000561.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Leathers, R. A., T. V. Downes, and C. D. Mobley, 2004: Self-shading correction for oceanographic upwelling radiometers. Opt. Express, 12, 47094718, doi:10.1364/OPEX.12.004709.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lee, Z.-P., Ed., 2006: Remote sensing of inherent optical properties: Fundamentals, tests of algorithms, and applications. IOCCG Rep. 5, 126 pp.

  • Lee, Z.-P., K.-P. Du, and R. Arnone, 2005: A model for the diffuse attenuation coefficient of downwelling irradiance. J. Geophys. Res., 110, C02016, doi:10.1029/2004JC002275.

    • Search Google Scholar
    • Export Citation
  • Lee, Z.-P., C.-M. Hu, S.-L. Shang, K.-P. Du, M. Lewis, R. Arnone, and R. Brewin, 2013: Penetration of UV-visible solar radiation in the global oceans: Insights from ocean color remote sensing. J. Geophys. Res. Oceans, 118, 42414255, doi:10.1002/jgrc.20308.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Le Fouest, V., B. Zakardjian, F. Saucier, and S. Çizmeli, 2006: Application of SeaWIFS- and AVHRR-derived data for mesoscale and regional validation of a 3-D high-resolution physical–biological model of the Gulf of St. Lawrence (Canada). J. Mar. Syst., 60, 3050, doi:10.1016/j.jmarsys.2005.11.008.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Levasseur, M., L. Fortier, J.-C. Therriault, and P. J. Harrison, 1992: Phytoplankton dynamics in a coastal jet frontal region. Mar. Ecol.: Prog. Ser., 86, 283295, doi:10.3354/meps086283.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, L., D. Stramski, and R. A. Reynolds, 2016: Effects of inelastic radiative processes on the determination of water-leaving spectral radiance from extrapolation of underwater near-surface measurements. Appl. Opt., 55, 70507067, doi:10.1364/AO.55.007050.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Maffione, R., and D. Dana, 1997: Instruments and methods for measuring the backward-scattering coefficient of ocean waters. Appl. Opt., 36, 60576067, doi:10.1364/AO.36.006057.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mobley, C. D., 1994: Light and Water: Radiative Transfer in Natural Waters. 1st ed. Academic Press, 592 pp.

  • Morrow, J. H., S. B. Hooker, C. R. Booth, G. Bernhard, R. N. Lind, and J. W. Brown, 2010: Advances in measuring the apparent optical properties (AOPs) of optically complex waters. NASA Tech. Memo. NASA/TM-2010-215856, 80 pp.

  • Mueller, J. L., and Coauthors, 2003: Radiometric measurements and data analysis protocols. Vol. VI, Revision 4, Ocean optics protocols for satellite ocean color sensor validation, NASA Tech Memo. NASA/TM-2003-21621/Rev-Vol III, 78 pp.

  • Nieke, B., R. Reuter, R. Heuermann, H. Wang, M. Babin, and J.-C. Therriault, 1997: Light absorption and fluorescence properties of chromophoric dissolved organic matter (CDOM), in the St. Lawrence Estuary (Case 2 waters). Cont. Shelf Res., 17, 235252, doi:10.1016/S0278-4343(96)00034-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Parent, G. J., S. Plourde, P. Joly, and J. Turgeon, 2015: Phenology and fitness of Calanus glacialis, C. finmarchicus (Copepoda), and their hybrids in the St. Lawrence Estuary. Mar. Ecol.: Prog. Ser., 524, 19, doi:10.3354/meps11240.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Parsons, T. R., Y. Maita, and C. M. Lalli, 1984: A Manual of Chemical and Biological Methods for Seawater Analysis. Pergamon Press, 173 pp.

  • Plourde, S., and J. A. Runge, 1993: Reproduction of the planktonic copepod Calanus finmarchicus in the Lower St. Lawrence Estuary: Relation to the cycle of phytoplankton production and evidence for a Calanus pump. Mar. Ecol.: Prog. Ser., 102, 217227, doi:10.3354/meps102217.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Röttgers, R., and S. Gehnke, 2012: Measurement of light absorption by aquatic particles: Improvement of the quantitative filter technique by use of an integrating sphere approach. Appl. Opt., 51, 13361351, doi:10.1364/AO.51.001336.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Röttgers, R., D. McKee, and C. Utschig, 2014: Temperature and salinity correction coefficients for light absorption by water in the visible to infrared spectral region. Opt. Express, 22, 25 09325 108, doi:10.1364/OE.22.025093.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ruddick, K. G., F. Ovidio, and M. Rijkeboer, 2000: Atmospheric correction of SeaWiFS imagery for turbid coastal and inland waters. Appl. Opt., 39, 897912, doi:10.1364/AO.39.000897.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stramski, D., R. A. Reynolds, S. Kaczmarek, J. Uitz, and G. Zheng, 2015: Correction of pathlength amplification in the filter-pad technique for measurements of particulate absorption coefficient in the visible spectral region. Appl. Opt., 54, 67636782, doi:10.1364/AO.54.006763.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Therriault, J.-C., and M. Levasseur, 1985: Control of phytoplankton production in the Lower St. Lawrence Estuary: Light and freshwater runoff. Nat. Can., 112, 7796.

    • Search Google Scholar
    • Export Citation
  • Van Der Linde, D., 1998: Protocol for determination of total suspended matter in oceans and coastal zones. Joint Research Centre Tech. Note I.98.182, 182 pp.

  • Wang, M., and W. Shi, 2007: The NIR-SWIR combined atmospheric correction approach for MODIS ocean color data processing. Opt. Express, 15, 15 72215 733, doi:10.1364/OE.15.015722.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yayla, K. M., 2009: An empirical approach to the remote sensing of the chlorophyll in optically complex waters of the estuary and Gulf of St. Lawrence. Ph.D. thesis, Université de Sherbrooke, 174 pp.

  • Zhang, X., L. Hu, and M.-X. He, 2009: Scattering by pure seawater: Effect of salinity. Opt. Express, 17, 56985710, doi:10.1364/OE.17.005698.

  • Zibordi, G., and G. M. Ferrari, 1995: Instrument self-shading in underwater optical measurements: Experimental data. Appl. Opt., 34, 27502754, doi:10.1364/AO.34.002750.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zibordi, G., F. Mélin, S. B. Hooker, D. D’Alimonte, and B. Holben, 2004: An autonomous above-water system for the validation of ocean color radiance data. IEEE Trans. Geosci. Remote Sens., 42, 401415, doi:10.1109/TGRS.2003.821064.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zibordi, G., and Coauthors, 2009: AERONET-OC: A network for the validation of ocean color primary products. J. Atmos. Oceanic Technol., 26, 16341651, doi:10.1175/2009JTECHO654.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zibordi, G., and Coauthors, 2015: System vicarious calibration for ocean color climate change applications: Requirements for in situ data. Remote Sens. Environ., 159, 361369, doi:10.1016/j.rse.2014.12.015.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1269 710 20
PDF Downloads 384 48 4