Remote Measurements of Tides and River Slope Using an Airborne Lidar Instrument

Austin S. Hudson Civil and Environmental Engineering Department, Portland State University, Portland, Oregon

Search for other papers by Austin S. Hudson in
Current site
Google Scholar
PubMed
Close
,
Stefan A. Talke Civil and Environmental Engineering Department, Portland State University, Portland, Oregon

Search for other papers by Stefan A. Talke in
Current site
Google Scholar
PubMed
Close
,
Ruth Branch Applied Physics Laboratory, University of Washington, Seattle, Washington

Search for other papers by Ruth Branch in
Current site
Google Scholar
PubMed
Close
,
Chris Chickadel Applied Physics Laboratory, University of Washington, Seattle, Washington

Search for other papers by Chris Chickadel in
Current site
Google Scholar
PubMed
Close
,
Gordon Farquharson Applied Physics Laboratory, University of Washington, Seattle, Washington

Search for other papers by Gordon Farquharson in
Current site
Google Scholar
PubMed
Close
, and
Andrew Jessup Applied Physics Laboratory, University of Washington, Seattle, Washington

Search for other papers by Andrew Jessup in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Tides and river slope are fundamental characteristics of estuaries, but they are usually undersampled due to deficiencies in the spatial coverage of water level measurements. This study aims to address this issue by investigating the use of airborne lidar measurements to study tidal statistics and river slope in the Columbia River estuary. Eight plane transects over a 12-h period yield at least eight independent measurements of water level at 2.5-km increments over a 65-km stretch of the estuary. These data are fit to a sinusoidal curve and the results are compared to seven in situ gauges. In situ– and lidar-based tide curves agree to within a root-mean-square error of 0.21 m, and the lidar-based river slope estimate of 1.8 × 10−5 agrees well with the in situ–based estimate of 1.4 × 10−5 (4 mm km−1 difference). Lidar-based amplitude and phase estimates are within 10% and 8°, respectively, of their in situ counterparts throughout most of the estuary. Error analysis suggests that increased measurement accuracy and more transects are required to reduce the errors in estimates of tidal amplitude and phase. However, the results validate the use of airborne remote sensing to measure tides and suggest this approach can be used to systematically study water levels at a spatial density not possible with in situ gauges.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author e-mail: Austin S. Hudson, hudsona@pdx.edu

Abstract

Tides and river slope are fundamental characteristics of estuaries, but they are usually undersampled due to deficiencies in the spatial coverage of water level measurements. This study aims to address this issue by investigating the use of airborne lidar measurements to study tidal statistics and river slope in the Columbia River estuary. Eight plane transects over a 12-h period yield at least eight independent measurements of water level at 2.5-km increments over a 65-km stretch of the estuary. These data are fit to a sinusoidal curve and the results are compared to seven in situ gauges. In situ– and lidar-based tide curves agree to within a root-mean-square error of 0.21 m, and the lidar-based river slope estimate of 1.8 × 10−5 agrees well with the in situ–based estimate of 1.4 × 10−5 (4 mm km−1 difference). Lidar-based amplitude and phase estimates are within 10% and 8°, respectively, of their in situ counterparts throughout most of the estuary. Error analysis suggests that increased measurement accuracy and more transects are required to reduce the errors in estimates of tidal amplitude and phase. However, the results validate the use of airborne remote sensing to measure tides and suggest this approach can be used to systematically study water levels at a spatial density not possible with in situ gauges.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author e-mail: Austin S. Hudson, hudsona@pdx.edu
Save
  • Agnew, D. C., 1986: Detailed analysis of tide gauge data: A case history. Mar. Geod., 10, 231255, doi:10.1080/01490418609388024.

  • Buiteveld, H., J. H. M. Hakvoort, and M. Donze, 1994: The optical properties of pure water. Ocean Optics XII, J. S. Jaffe, Ed., International Society for Optical Engineering (SPIE Proceedings, Vol. 2258), 174183, doi:10.1117/12.190060.

    • Crossref
    • Export Citation
  • Burchard, H., H. M. Schuttelaars, and W. R. Geyer, 2013: Residual sediment fluxes in weakly-to-periodically stratified estuaries and tidal inlets. J. Phys. Oceanogr., 43, 18411861, doi:10.1175/JPO-D-12-0231.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Burgette, R. J., R. J. Weldon, and D. A. Schmidt, 2009: Interseismic uplift rates for western Oregon and along-strike variation in locking on the Cascadia subduction zone. J. Geophys. Res. Solid Earth, 114, doi:10.1029/2008JB005679.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cheng, P., H. E. de Swart, and A. Valle-Levinson, 2013: Role of asymmetric tidal mixing in the subtidal dynamics of narrow estuaries. J. Geophys. Res. Oceans, 118, 26232639, doi:10.1002/jgrc.20189.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chickadel, C. C., S. A. Talke, A. R. Horner-Devine, and A. T. Jessup, 2011: Infrared-based measurements of velocity, turbulent kinetic energy, and dissipation at the water surface in a tidal river. IEEE Geosci. Remote Sens. Lett., 8, 849853, doi:10.1109/LGRS.2011.2125942.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Díaz Méndez, G. M., M. C. Haller, B. Raubenheimer, S. Elgar, and D. A. Honegger, 2015: Radar remote sensing estimates of waves and wave forcing at a tidal inlet. J. Atmos. Oceanic Technol., 32, 842854, doi:10.1175/JTECH-D-14-00215.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Farquharson, G., H. Deng, Y. Goncharenko, and J. Mower, 2014: Dual-beam ATI SAR measurements of surface currents in the nearshore ocean. 2014 IEEE Geoscience and Remote Sensing Symposium: Proceedings, IEEE, 26612664, doi:10.1109/IGARSS.2014.6947021.

    • Crossref
    • Export Citation
  • Foreman, M. G. G., 1977: Manual for Tidal Heights Analysis and Prediction. Institute of Ocean Sciences Marine Science Rep. 77-10, 97 pp.

  • Friedrichs, C. T., and D. G. Aubrey, 1988: Non-linear tidal distortion in shallow well-mixed estuaries: A synthesis. Estuarine Coastal Shelf Sci., 27, 521545, doi:10.1016/0272-7714(88)90082-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Giese, B. J., and D. A. Jay, 1989: Modelling tidal energetics of the Columbia River Estuary. Estuarine Coastal Shelf Sci., 29, 549571, doi:10.1016/0272-7714(89)90010-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Harlan, J., E. Terrill, L. Hazard, C. Keen, D. Barrick, C. Whelan, S. Howden, and J. Kohut, 2010: The Integrated Ocean Observing System high-frequency radar network: Status and local, regional, and national applications. Mar. Technol. Soc. J., 44, 122132, doi:10.4031/MTSJ.44.6.6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hickson, R. E., 1912: A report on the establishment of river gauges on lower Columbia River & Willamette Rivers. Army Corps of Engineers, 8 pp.

  • Holman, R., N. Plant, and T. Holland, 2013: cBathy: A robust algorithm for estimating nearshore bathymetry. J. Geophys. Res. Oceans, 118, 25952609, doi:10.1002/jgrc.20199.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hwang, P. A., D. W. Wang, E. J. Walsh, W. B. Krabil, and R. N. Swift, 2000a: Airborne measurements of the wavenumber spectra of ocean surface waves. Part I: Spectral slope and dimensionless spectral coefficient. J. Phys. Oceanogr., 30, 27532767, doi:10.1175/1520-0485(2001)031<2753:AMOTWS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hwang, P. A., D. W. Wang, E. J. Walsh, W. B. Krabil, and R. N. Swift, 2000b: Airborne measurements of the wavenumber spectra of ocean surface waves. Part II: Directional distribution. J. Phys. Oceanogr., 30, 27682787, doi:10.1175/1520-0485(2001)031<2768:AMOTWS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jay, D. A., 1984: Circulatory processes in the Columbia River estuary. CREST Rep., 169 pp.

  • Jay, D. A., 1991: Green’s law revisited: Tidal long-wave propagation in channels with strong topography. J. Geophys. Res., 96, 20 58520 598, doi:10.1029/91JC01633.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jay, D. A., and J. D. Smith, 1990: Circulation, density distribution and neap-spring transitions in the Columbia River Estuary. Prog. Oceanogr., 25, 81112, doi:10.1016/0079-6611(90)90004-L.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jay, D. A., and J. D. Musiak, 1994: Particle trapping in estuarine tidal flows. J. Geophys. Res., 99, 20 44520 461, doi:10.1029/94JC00971.

  • Jay, D. A., and J. D. Musiak, 1996: Internal tidal asymmetry in channel flows: Origins and consequences. Mixing in Estuaries and Coastal Seas, C. Pattiaratchi, Ed., Coastal and Estuarine Studies, Vol. 50, Amer. Geophys. Union, 211–249, doi:10.1029/CE050p0211.

    • Crossref
    • Export Citation
  • Jay, D. A., and E. P. Flinchem, 1999: A comparison of methods for analysis of tidal records containing multi-scale non-tidal background energy. Cont. Shelf Res., 19, 16951732, doi:10.1016/S0278-4343(99)00036-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jay, D. A., B. S. Giese, and C. R. Sherwood, 1990: Energetics and sedimentary processes in the Columbia River Estuary. Prog. Oceanogr., 25, 157174, doi:10.1016/0079-6611(90)90006-N.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jay, D. A., K. Leffler, and S. Degens, 2011: Long-term evolution of Columbia River tides. J. Waterw. Port Coastal Ocean Eng., 137, 182191, doi:10.1061/(ASCE)WW.1943-5460.0000082.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lefsky, M. A., W. B. Cohen, G. G. Parker, and D. J. Harding, 2002: Lidar remote sensing for ecosystem studies. BioScience, 52, 1930, doi:10.1641/0006-3568(2002)052[0019:LRSFES]2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Magalhaes, J. M., J. C. Silva, M. Batista, L. Gostiaux, T. Gerkema, A. L. New, and D. R. G. Jeans, 2013: On the detectability of internal waves by imaging lidar. Geophys. Res. Lett., 40, 34293434, doi:10.1002/grl.50669.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marmorino, G., J. Brozena, G. G. Smith, R. Liang, M. Vermillion, and W. D. Miller, 2015: Lidar-measured Bernoulli response to tidal flow over a sill. IEEE Geosci. Remote Sens. Lett., 12, 11161120, doi:10.1109/LGRS.2014.2385599.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Miguez, B. M., L. Testut, and G. Wöppelmann, 2008: The Van de Casteele test revisited: An efficient approach to tide gauge error characterization. J. Atmos. Oceanic Technol., 25, 12381244, doi:10.1175/2007JTECHO554.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moftakhari, H. R., D. A. Jay, S. A. Talke, T. Kukulka, and P. D. Bromirski, 2013: A novel approach to flow estimation in tidal rivers. Water Resour. Res., 49, 48174832, doi:10.1002/wrcr.20363.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Naik, P. K., and D. A. Jay, 2011: Distinguishing human and climate influences on the Columbia River: Changes in mean flow and sediment transport. J. Hydrol., 404, 259277, doi:10.1016/j.jhydrol.2011.04.035.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Neeck, S. P., E. J. Lindstrom, P. V. Vaze, and L.-L. Fu, 2012: Surface Water and Ocean Topography (SWOT) mission. Sensors, Systems, and Next-Generation Satellites XVI, R. Meynart, S. P. Neeck, and H. Shimoda, Eds., International Society for Optical Engineering (SPIE Proceedings, Vol. 8533), doi:10.1117/12.981151.

    • Crossref
    • Export Citation
  • NOAA, 2015: Estimation of vertical uncertainties in VDatum. Accessed May 2016. [Available online at http://vdatum.noaa.gov/docs/est_uncertainties.html.]

  • Pan, J., D. A. Jay, and P. M. Orton, 2007: Analyses of internal solitary waves generated at the Columbia River plume front using SAR imagery. J. Geophys. Res., 112, doi:10.1029/2006JC003688.

    • Search Google Scholar
    • Export Citation
  • Pavlis, N. K., S. A. Holmes, S. C. Kenyon, and J. K. Factor, 2012: The development and evaluation of the Earth Gravitational Model 2008 (EGM2008). J. Geophys. Res., 117, B04406, doi:10.1029/2011JB008916.

    • Search Google Scholar
    • Export Citation
  • Reineman, B. D., L. Lenain, D. Castel, and W. K. Melville, 2009: A portable airborne scanning lidar system for ocean and coastal applications. J. Atmos. Oceanic Technol., 26, 26262641, doi:10.1175/2009JTECHO703.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Talke, S. A., A. R. Horner-Devine, C. C. Chickadel, and A. T. Jessup, 2013: Turbulent kinetic energy and coherent structures in a tidal river. J. Geophys. Res. Oceans, 118, 69656981, doi:10.1002/2012JC008103.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vrbancich, J., W. Lieff, and J. Hacker, 2011: Demonstration of two portable scanning lidar systems flown at low-altitude for investigating coastal sea surface topography. Remote Sens., 3, 19832001, doi:10.3390/rs3091983.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1230 685 12
PDF Downloads 267 31 3