Correction of Dual-PRF Doppler Velocity Outliers in the Presence of Aliasing

Patricia Altube Meteorological Service of Catalonia, and Department of Astronomy and Meteorology, University of Barcelona, Barcelona, Spain

Search for other papers by Patricia Altube in
Current site
Google Scholar
PubMed
Close
,
Joan Bech Department of Astronomy and Meteorology, University of Barcelona, Barcelona, Spain

Search for other papers by Joan Bech in
Current site
Google Scholar
PubMed
Close
,
Oriol Argemí Meteorological Service of Catalonia, Barcelona, Spain

Search for other papers by Oriol Argemí in
Current site
Google Scholar
PubMed
Close
,
Tomeu Rigo Meteorological Service of Catalonia, Barcelona, Spain

Search for other papers by Tomeu Rigo in
Current site
Google Scholar
PubMed
Close
,
Nicolau Pineda Meteorological Service of Catalonia, Barcelona, Spain

Search for other papers by Nicolau Pineda in
Current site
Google Scholar
PubMed
Close
,
Scott Collis Environmental Science Division, Argonne National Laboratory, Argonne, Illinois

Search for other papers by Scott Collis in
Current site
Google Scholar
PubMed
Close
, and
Jonathan Helmus Environmental Science Division, Argonne National Laboratory, Argonne, Illinois

Search for other papers by Jonathan Helmus in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

In Doppler weather radars, the presence of unfolding errors or outliers is a well-known quality issue for radial velocity fields estimated using the dual–pulse repetition frequency (PRF) technique. Postprocessing methods have been developed to correct dual-PRF outliers, but these need prior application of a dealiasing algorithm for an adequate correction. This paper presents an alternative procedure based on circular statistics that corrects dual-PRF errors in the presence of extended Nyquist aliasing. The correction potential of the proposed method is quantitatively tested by means of velocity field simulations and is exemplified in the application to real cases, including severe storm events. The comparison with two other existing correction methods indicates an improved performance in the correction of clustered outliers. The technique proposed is well suited for real-time applications requiring high-quality Doppler radar velocity fields, such as wind shear and mesocyclone detection algorithms, or assimilation in numerical weather prediction models.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Patricia Altube, paltube@meteo.cat; patriciaaltube@gmail.com

Abstract

In Doppler weather radars, the presence of unfolding errors or outliers is a well-known quality issue for radial velocity fields estimated using the dual–pulse repetition frequency (PRF) technique. Postprocessing methods have been developed to correct dual-PRF outliers, but these need prior application of a dealiasing algorithm for an adequate correction. This paper presents an alternative procedure based on circular statistics that corrects dual-PRF errors in the presence of extended Nyquist aliasing. The correction potential of the proposed method is quantitatively tested by means of velocity field simulations and is exemplified in the application to real cases, including severe storm events. The comparison with two other existing correction methods indicates an improved performance in the correction of clustered outliers. The technique proposed is well suited for real-time applications requiring high-quality Doppler radar velocity fields, such as wind shear and mesocyclone detection algorithms, or assimilation in numerical weather prediction models.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Patricia Altube, paltube@meteo.cat; patriciaaltube@gmail.com
Save
  • Altube, P., J. Bech, O. Argemí, and T. Rigo, 2015: Quality control of antenna alignment and receiver calibration using the sun: Adaptation to midrange weather radar observations at low elevation angles. J. Atmos. Oceanic Technol., 32, 927942, doi:10.1175/JTECH-D-14-00116.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Banjanin, Z. B., and D. S. Zrnić, 1991: Clutter rejection for Doppler weather radars which use staggered pulses. IEEE Trans. Geosci. Remote Sens., 29, 610620, doi:10.1109/36.135823.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bech, J., and Coauthors, 2004: The weather radar network of the Catalan Meteorological Service: Description and applications. Third European Conference on Radar in Meteorology and Hydrology together with the COST 717 Final Seminar, ERAD Publication Series, Vol. 2, ERAD, 416–420.

  • Bech, J., R. Pascual, T. Rigo, N. Pineda, J. M. López, J. Arús, and M. Gayà, 2007: An observational study of the 7 September 2005 Barcelona tornado outbreak. Nat. Hazards Earth Syst. Sci., 7, 129139, doi:10.5194/nhess-7-129-2007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bech, J., and Coauthors, 2011: A Mediterranean nocturnal heavy rainfall and tornadic event. Part I: Overview, damage survey and radar analysis. Atmos. Res., 100, 621637, doi:10.1016/j.atmosres.2010.12.024.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bellon, A., and I. Zawadzki, 2003: A 9-year summary of radar characteristics of mesocyclonic storms and deep convection in southern Québec. Atmos.–Ocean, 41, 99120, doi:10.3137/ao.410201.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bergen, W. R., and S. C. Albers, 1988: Two- and three-dimensional de-aliasing of Doppler radar velocities. J. Atmos. Oceanic Technol., 5, 305319, doi:10.1175/1520-0426(1988)005<0305:TATDDA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bharadwaj, N., V. Chandrasekar, and F. Junyent, 2010: Signal processing system for the CASA Integrated Project 1 radars. J. Atmos. Oceanic Technol., 27, 14401460, doi:10.1175/2010JTECHA1415.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brown, R. A., and V. T. Wood, 2007: A guide for interpreting Doppler velocity patterns: Northern Hemisphere edition. 2nd ed. NOAA/NSSL, 55 pp.

  • Cho, J. Y. N., 2005: Multi-PRI signal processing for the terminal Doppler weather radar. Part II: Range–velocity ambiguity mitigation. J. Atmos. Oceanic Technol., 22, 15071519, doi:10.1175/JTECH1805.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dazhang, T., S. G. Geotis, R. E. Passarelli Jr., A. L. Hansen, and C. L. Frush, 1984: Evaluation of an alternating-PRF method for extending the range of unambiguous Doppler velocity. Preprints, 22nd Conf. on Radar Meteorology, Zurich, Switzerland, Amer. Meteor. Soc., 523–527.

  • Doviak, R. J., and D. S. Zrnić, 2006: Doppler Radar and Weather Observations. 2nd ed. Dover Publications, 592 pp.

  • Eilts, M. D., and S. D. Smith, 1990: Efficient dealiasing of Doppler velocities using local environment constrains. J. Atmos. Oceanic Technol., 7, 118128, doi:10.1175/1520-0426(1990)007<0118:EDODVU>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fisher, N. I., 1993: Statistical Analysis of Circular Data. 1st ed. Cambridge University Press, 279 pp.

    • Crossref
    • Export Citation
  • Frush, C., R. J. Doviak, M. Sachidananda, and D. S. Zrnić, 2002: Application of the SZ phase code to mitigate range–velocity ambiguities in weather radars. J. Atmos. Oceanic Technol., 19, 413430, doi:10.1175/1520-0426(2002)019<0413:AOTSPC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Haase, G., and T. Landelius, 2004: Dealiasing of Doppler radar velocities using a torus mapping. J. Atmos. Oceanic Technol., 21, 15661573, doi:10.1175/1520-0426(2004)021<1566:DODRVU>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hampel, F. R., E. M. Ronchetti, P. J. Rousseeuw, and W. A. Stahel, 1986: Robust Statistics: The Approach Based on Influence Functions. 1st ed. John Wiley and Sons, 511 pp.

  • Helmus, J. J., and S. M. Collis, 2016: The Python ARM Radar Toolkit (Py-ART), a library for working with weather radar data in the Python programming language. J. Open Res. Software, 4, p.e25, doi:10.5334/jors.119.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hengstebeck, T., D. Heizenreder, and P. Joe, 2014: Detection of atmospheric rotation by means of the DWD radar network. Proc. Eighth European Conf. on Radar Meteorology and Hydrology, Garmisch-Partenkirchen, Germany, ERAD, NOW.P11. [Available online at http://www.pa.op.dlr.de/erad2014/programme/ExtendedAbstracts/196_Hengstebeck.pdf.]

  • Holleman, I., and H. Beekhuis, 2003: Analysis and correction of dual PRF velocity data. J. Atmos. Oceanic Technol., 20, 443453, doi:10.1175/1520-0426(2003)20<443:AACODP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • James, C. N., and R. A. J. Houze Jr., 2001: A real-time four-dimensional Doppler dealiasing scheme. J. Atmos. Oceanic Technol., 18, 16741683, doi:10.1175/1520-0426(2001)018<1674:ARTFDD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jing, Z., and G. Wiener, 1993: Two-dimensional dealiasing of Doppler velocities. J. Atmos. Oceanic Technol., 10, 798808, doi:10.1175/1520-0426(1993)010<0798:TDDODV>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Joe, P., and P. T. May, 2003: Correction of dual PRF errors for operational weather radars. J. Atmos. Oceanic Technol., 20, 429442, doi:10.1175/1520-0426(2003)20<429:CODPVE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jorgensen, D. P., T. R. Shepherd, and A. S. Goldstein, 2000: A dual-pulse repetition frequency scheme for mitigating velocity ambiguities of the NOAA P-3 airborne Doppler radar. J. Atmos. Oceanic Technol., 17, 585594, doi:10.1175/1520-0426(2000)017<0585:ADPRFS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • May, P. T., 2001: Mesocyclone and microburst signature distortion with dual PRT radar. J. Atmos. Oceanic Technol., 18, 12291233, doi:10.1175/1520-0426(2001)018<1229:MAMSDW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Miller, L. J., C. G. Mohr, and A. J. Weinheimer, 1986: The simple rectification to Cartesian space of folded radial velocities from Doppler radar sampling. J. Atmos. Oceanic Technol., 3, 162174, doi:10.1175/1520-0426(1986)003<0162:TSRTCS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Miller, M. L., V. Lakshmanan, and T. M. Smith, 2013: An automated method for depicting mesocyclone paths and intensities. Wea. Forecasting, 28, 570585, doi:10.1175/WAF-D-12-00065.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mitchell, E. D. W., S. V. Vasiloff, G. J. Stumpf, A. Witt, M. D. Eilts, J. T. Johnson, and K. W. Thomas, 1998: The National Severe Storms Laboratory tornado detection algorithm. Wea. Forecasting, 13, 352366, doi:10.1175/1520-0434(1998)013<0352:TNSSLT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pierce, C., A. Seed, S. P. Ballard, D. Simonin, and Z. Li, 2012: Nowcasting. Doppler Radar Observations—Weather Radar, Wind Profiler, Ionospheric Radar, and other Advanced Applications, J. Bech and J. L. Chau, Eds., InTech, 97–142, doi:10.5772/39054.

    • Crossref
    • Export Citation
  • Pineda, N., J. Bech, T. Rigo, and J. Montanyà, 2011: A Mediterranean nocturnal heavy rainfall and tornadic event. Part II: Total lightning analysis. Atmos. Res., 100, 638648, doi:10.1016/j.atmosres.2010.10.027.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ray, P. S., and C. Ziegler, 1977: De-aliasing first-moment Doppler estimates. J. Appl. Meteor., 16, 563564, doi:10.1175/1520-0450(1977)016<0563:DAFMDE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Roca-Sancho, J., M. Berenguer, and D. Sempere-Torres, 2014: An inverse method to retrieve 3D radar reflectivity composites. J. Hydrol., 519, 947965, doi:10.1016/j.jhydrol.2014.07.039.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sachidananda, M., and D. S. Zrnić, 1999: Systematic phase codes for resolving range overlaid signals in a Doppler weather radar. J. Atmos. Oceanic Technol., 16, 13511363, doi:10.1175/1520-0426(1999)016<1351:SPCFRR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sachidananda, M., and D. S. Zrnić, 2000: Clutter filtering and spectral moment estimation for Doppler weather radars using staggered pulse repetition time (PRT). J. Atmos. Oceanic Technol., 17, 323331, doi:10.1175/1520-0426(2000)017<0323:CFASME>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sirmans, D., D. Zrnić, and B. Bumgarner, 1976: Extension of maximum unambiguous Doppler velocity by use of two sampling rates. Preprints, 17th Conf. on Radar Meteorology, Seattle, WA, Amer. Meteor. Soc., 23–28.

  • Smith, T. M., K. L. Elmore, and S. A. Dulin, 2004: A damaging downburst prediction and detection algorithm for the WSR-88D. Wea. Forecasting, 19, 240250, doi:10.1175/1520-0434(2004)019<0240:ADDPAD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stensrud, D. J., and Coauthors, 2009: Convective-scale warn-on-forecast system: A vision for 2020. Bull. Amer. Meteor. Soc., 90, 14871499, doi:10.1175/2009BAMS2795.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stumpf, G. J., A. Witt, E. D. Mitchell, P. L. Spencer, J. T. Johnson, M. D. Eilts, K. W. Thomas, and D. W. Burgess, 1998: The National Severe Storms Laboratory mesocyclone detection algorithm for the WSR-88D. Wea. Forecasting, 13, 304326, doi:10.1175/1520-0434(1998)013<0304:TNSSLM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sun, J., and N. A. Crook, 2001: Real-time low-level wind and temperature analysis using single WSR-88D data. Wea. Forecasting, 16, 117132, doi:10.1175/1520-0434(2001)016<0117:RTLLWA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tabary, P., F. Guibert, L. Perier, and J. Parent-du-Chatelet, 2006: An operational triple-PRT Doppler scheme for the French radar network. J. Atmos. Oceanic Technol., 23, 16451656, doi:10.1175/JTECH1923.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Torres, S. M., Y. F. Dubel, and D. S. Zrnić, 2004: Design, implementation, and demonstration of a staggered PRT algorithm for the WSR-88D. J. Atmos. Oceanic Technol., 21, 13891399, doi:10.1175/1520-0426(2004)021<1389:DIADOA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vaisala, 2014: User’s manual: Digital IF receiver/Doppler signal processor, RVP8. Vaisala Oyj Doc. M211321EN-D, 522 pp.

  • Wapler, K., T. Hengstebeck, and P. Groenemeijer, 2016: Mesocyclones in central Europe as seen by radar. Atmos. Res., 168, 112120, doi:10.1016/j.atmosres.2015.08.023.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • WMO, 2008: Guide to Meteorological Instruments and Methods of Observation. WMO Tech. Rep. 8, 7th ed. World Meteorological Organization, 681 pp.

  • Xu, Q., K. Nai, L. Wei, P. Zhang, S. Liu, and D. Parrish, 2011: A VAD-based dealiasing method for radar velocity data quality control. J. Atmos. Oceanic Technol., 28, 5062, doi:10.1175/2010JTECHA1444.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1594 391 54
PDF Downloads 1322 266 24