A Quality Control Method for Wind Profiler Observations toward Assimilation Applications

Yu Zhang Sun Yat-Sen University, Guangzhou, and Institute of Urban Meteorology, China Meteorological Administration, Beijing, China

Search for other papers by Yu Zhang in
Current site
Google Scholar
PubMed
Close
,
Min Chen Institute of Urban Meteorology, China Meteorological Administration, Beijing, China

Search for other papers by Min Chen in
Current site
Google Scholar
PubMed
Close
, and
Jiqin Zhong Institute of Urban Meteorology, China Meteorological Administration, Beijing, China

Search for other papers by Jiqin Zhong in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

A wind profiler network with a total of 65 profiling radar systems was operated by the China Meteorological Observation Center (MOC) of the China Meteorological Administration (CMA) until July 2015. In this study, a quality control procedure is constructed to incorporate the profiler data from the wind-profiling network into the local data assimilation and forecasting systems. The procedure applies a blacklisting check that removes stations with gross errors and an outlier check that rejects data with large deviations from the background. As opposed to the biweight method, which has been commonly implemented in outlier elimination for univariate observations, the outlier elimination method is developed based on the iterated reweighted minimum covariance determinant (IRMCD) for multivariate observations, such as wind profiler data. A quality control experiment is performed separately for subsets containing profiler data tagged with/without rain flags in parallel every 0000 and 1200 UTC from 20 June to 30 September 2015. The results show that with quality control, the frequency distributions of the differences between the observations and the model background meet the requirements of a Gaussian distribution for data assimilation. A further intensive assessment of each quality control step reveals that the stations rejected by the blacklisting contained poor data quality and that the IRMCD rejects outliers in a robust and physically reasonable manner. Detailed comparisons between the IRMCD and the biweight method are performed, and the IRMCD is demonstrated to be more efficient and more comprehensive regarding the dataset used in this study.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Min Chen, mchen@ium.cn

Abstract

A wind profiler network with a total of 65 profiling radar systems was operated by the China Meteorological Observation Center (MOC) of the China Meteorological Administration (CMA) until July 2015. In this study, a quality control procedure is constructed to incorporate the profiler data from the wind-profiling network into the local data assimilation and forecasting systems. The procedure applies a blacklisting check that removes stations with gross errors and an outlier check that rejects data with large deviations from the background. As opposed to the biweight method, which has been commonly implemented in outlier elimination for univariate observations, the outlier elimination method is developed based on the iterated reweighted minimum covariance determinant (IRMCD) for multivariate observations, such as wind profiler data. A quality control experiment is performed separately for subsets containing profiler data tagged with/without rain flags in parallel every 0000 and 1200 UTC from 20 June to 30 September 2015. The results show that with quality control, the frequency distributions of the differences between the observations and the model background meet the requirements of a Gaussian distribution for data assimilation. A further intensive assessment of each quality control step reveals that the stations rejected by the blacklisting contained poor data quality and that the IRMCD rejects outliers in a robust and physically reasonable manner. Detailed comparisons between the IRMCD and the biweight method are performed, and the IRMCD is demonstrated to be more efficient and more comprehensive regarding the dataset used in this study.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Min Chen, mchen@ium.cn
Save
  • Andersson, E., and A. Garcia-Mendez, 2002: Assessment of European wind profiler data, in an NWP context. Tijdschr. Hoger Onderwijs, 20, 202205.

    • Search Google Scholar
    • Export Citation
  • Benjamin, S. G., B. E. Schwartz, S. E. Koch, and E. J. Szoke, 2004: The value of wind profiler data in U.S. weather forecasting. Bull. Amer. Meteor. Soc., 85, 18711886, doi:10.1175/BAMS-85-12-1871.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bouttier, F., 2001: The use of profiler data at ECMWF. Meteor. Z., 10, 497510, doi:10.1127/0941-2948/2001/0010-0497.

  • Cerioli, A., 2010: Multivariate outlier detection with high-breakdown estimators. J. Amer. Stat. Assoc., 105, 147156, doi:10.1198/jasa.2009.tm09147.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, M., S.-Y. Fan, J. Zhong, X.-Y. Huang, Y.-R. Guo, W. Wang, Y. Wang, and B. Kuo, 2009: A WRF-based rapid updating cycling forecast system of BMB and its performance during the summer and Olympic Games 2008. Int. Symp. on Nowcasting and Very Short Range Forecasting 2009 (WSN09), Whistler, BC, Canada, WWRP, P3B.37. [Available online at http://www2.mmm.ucar.edu/wrf/users/workshops/WS2009/abstracts/P3B-37.pdf.]

  • Dong, L., and L. Wu, 2014: Comparing wind profiler data with NCEP reanalyzed data and analyzing (in Chinese). Electron. Des. Eng., 156–158.

  • Dong, L., L. Wu, L. Wang, C. Zhao, and Y. Liu, 2014: Preliminary comparison research of the wind profile radar network data (in Chinese). Meteor. Mon., 40, 11451151.

    • Search Google Scholar
    • Export Citation
  • Dudhia, J., 1989: Numerical study of convection observed during the Winter Monsoon Experiment using a mesoscale two-dimensional model. J. Atmos. Sci., 46, 30773107, doi:10.1175/1520-0469(1989)046<3077:NSOCOD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Green, C. G. 2016: CerioliOutlierDetection: Outlier detection using the iterated RMCD method of Cerioli (2010), version 1.1.5. R package. [Available online at https://cran.r-project.org/web/packages/CerioliOutlierDetection/index.html.]

  • Hardin, J., and D. M. Rocke, 2005: The distribution of robust distances. J. Comput. Graphical Stat., 14, 928946, doi:10.1198/106186005X77685.

  • Hawkins, D. M., and D. J. Olive, 1999: Improved feasible solution algorithms for high breakdown estimation. Comput. Stat. Data Anal., 30, 111, doi:10.1016/S0167-9473(98)00082-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hong, S.-Y., and J.-O. J. Lim, 2006: The WRF Single-Moment 6-Class Microphysics Scheme (WSM6). J. Korean Meteor. Soc., 42, 129151.

  • Hong, S.-Y., Y. Noh, and J. Dudhia, 2006: A new vertical diffusion package with an explicit treatment of entrainment processes. Mon. Wea. Rev., 134, 23182341, doi:10.1175/MWR3199.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hubert, M., and M. Debruyne, 2010: Minimum covariance determinant. Wiley Interdiscip. Rev.: Comput. Stat., 2, 3643, doi:10.1002/wics.61.

  • Hubert, M., P. J. Rousseeuw, and S. Van Aelst, 2008: High-breakdown robust multivariate methods. Stat. Sci., 23, 92119, doi:10.1214/088342307000000087.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ishihara, M., Y. Kato, T. Abo, K. Kobayashi, and Y. Izumikawa, 2006: Characteristics and performance of the operational wind profiler network of the Japan Meteorological Agency. J. Meteor. Soc. Japan, 84, 10851096, doi:10.2151/jmsj.84.1085.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kain, J. S., 2004: The Kain–Fritsch convective parameterization: An update. J. Appl. Meteor., 43, 170181, doi:10.1175/1520-0450(2004)043<0170:TKCPAU>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lambert, W. C., F. J. Merceret, G. E. Taylor, and J. G. Ward, 2003: Performance of five 915-MHz wind profilers and an associated automated quality control algorithm in an operational environment. J. Atmos. Oceanic Technol., 20, 14881495, doi:10.1175/1520-0426(2003)020<1488:POFMWP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lanzante, J. R., 1996: Resistant, robust and non-parametric techniques for the analysis of climate data: Theory and examples, including applications to historical radiosonde. Int. J. Climatol., 16, 11971226, doi:10.1002/(SICI)1097-0088(199611)16:11<1197::AID-JOC89>3.0.CO;2-L.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lee, S.-J., and H. Kawai, 2011: Mixing depth estimation from operational JMA and KMA wind-profiler data and its preliminary applications: Examples from four selected sites. J. Meteor. Soc. Japan, 89, 1528, doi:10.2151/jmsj.2011-102.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, J., and X. Zou, 2013: A quality control procedure for FY-3A MWTS measurements with emphasis on cloud detection using VIRR cloud fraction. J. Atmos. Oceanic Technol., 30, 17041715, doi:10.1175/JTECH-D-12-00164.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lopez, P., and P. Bauer, 2007: “1D+4DVAR” assimilation of NCEP stage-IV radar and gauge hourly precipitation data at ECMWF. Mon. Wea. Rev., 135, 25062524, doi:10.1175/MWR3409.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lorenc, A. C., 1986: Analysis methods for numerical weather prediction. Quart. J. Roy. Meteor. Soc., 112, 11771194, doi:10.1002/qj.49711247414.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mlawer, E. J., S. J. Taubman, P. D. Brown, M. J. Iacono, and S. A. Clough, 1997: Radiative transfer for inhomogeneous atmosphere: RRTM, a validated correlated-k model for the longwave. J. Geophys. Res., 102, 16 66316 682, doi:10.1029/97JD00237.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rousseeuw, P. J., 1984: Least median of squares regression. J. Amer. Stat. Assoc., 79, 871880, doi:10.1080/01621459.1984.10477105.

  • Rousseeuw, P. J., 1985: Multivariate estimation with high breakdown point. Mathematical Statistics and Applications: Proceedings of the Fourth Pannonian Symposium on Mathematical Statistics, W. Grossmann et al., Eds., Vol. B. Springer, 283–297.

    • Crossref
    • Export Citation
  • Rousseeuw, P. J., and K. Van Driessen, 1999: A fast algorithm for the minimum covariance determinant estimator. Technometrics, 41, 212223, doi:10.1080/00401706.1999.10485670.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., and Coauthors, 2008: A description of the Advanced Research WRF version 3. NCAR Tech. Note NCAR/TN-475+STR, 113 pp., doi:10.5065/D68S4MVH.

    • Crossref
    • Export Citation
  • St-James, J. S., and S. Laroche, 2005: Assimilation of wind profiler data in the Canadian Meteorological Centre’s analysis systems. J. Atmos. Oceanic Technol., 22, 11811194, doi:10.1175/JTECH1765.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Willems, G., H. Joe, and R. Zamar, 2009: Diagnosing multivariate outliers detected by robust estimators. J. Comput. Graphical Stat., 18, 7391, doi:10.1198/jcgs.2009.0005.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xu, Z., Y. Wang, and G. Fan, 2013: A two-stage quality control method for 2-m temperature observations using biweight means and a progressive EOF analysis. Mon. Wea. Rev., 141, 798808, doi:10.1175/MWR-D-11-00308.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zou, X., and Z . Zeng, 2006: A quality control procedure for GPS radio occultation data. J. Geophys. Res., 111, D02112, doi:10.1029/2005JD005846.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1004 311 58
PDF Downloads 833 173 12