On the Definition of Marginal Ice Zone Width

Courtenay Strong Department of Atmospheric Sciences, University of Utah, Salt Lake City, Utah

Search for other papers by Courtenay Strong in
Current site
Google Scholar
PubMed
Close
,
Dallas Foster Department of Mathematics, University of Utah, Salt Lake City, Utah

Search for other papers by Dallas Foster in
Current site
Google Scholar
PubMed
Close
,
Elena Cherkaev Department of Mathematics, University of Utah, Salt Lake City, Utah

Search for other papers by Elena Cherkaev in
Current site
Google Scholar
PubMed
Close
,
Ian Eisenman Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California

Search for other papers by Ian Eisenman in
Current site
Google Scholar
PubMed
Close
, and
Kenneth M. Golden Department of Mathematics, University of Utah, Salt Lake City, Utah

Search for other papers by Kenneth M. Golden in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Sea ice features a dense inner pack ice zone surrounded by a marginal ice zone (MIZ) in which the sea ice properties are modified by interaction with the ice-free open ocean. The width of the MIZ is a fundamental length scale for polar physical and biological dynamics. Several different criteria for establishing MIZ boundaries have emerged in the literature—wave penetration, floe size, sea ice concentration, etc.—and a variety of definitions for the width between the MIZ boundaries have been published. Here, three desirable mathematical properties for defining MIZ width are proposed: invariance with respect to translation and rotation on the sphere; uniqueness at every point in the MIZ; and generality, including nonconvex shapes. The previously published streamline definition is shown to satisfy all three properties, where width is defined as the arc length of a streamline through the solution to Laplaces’s equation within the MIZ boundaries, while other published definitions each satisfy only one of the desired properties. When defining MIZ spatial average width from streamline results, the rationale for averaging with respect to distance along both MIZ boundaries was left implicit in prior studies. Here it is made rigorous by developing and applying the mathematics of an analytically tractable idealization of MIZ geometry—the eccentric annulus. Finally, satellite-retrieved Arctic sea ice concentrations are used to investigate how well streamline-based MIZ spatial average width is approximated by alternative definitions that lack desirable mathematical properties or local width values but offer computational efficiency.

Current affiliation: Department of Mathematics, Oregon State University, Corvallis, Oregon.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Courtenay Strong, court.strong@utah.edu

Abstract

Sea ice features a dense inner pack ice zone surrounded by a marginal ice zone (MIZ) in which the sea ice properties are modified by interaction with the ice-free open ocean. The width of the MIZ is a fundamental length scale for polar physical and biological dynamics. Several different criteria for establishing MIZ boundaries have emerged in the literature—wave penetration, floe size, sea ice concentration, etc.—and a variety of definitions for the width between the MIZ boundaries have been published. Here, three desirable mathematical properties for defining MIZ width are proposed: invariance with respect to translation and rotation on the sphere; uniqueness at every point in the MIZ; and generality, including nonconvex shapes. The previously published streamline definition is shown to satisfy all three properties, where width is defined as the arc length of a streamline through the solution to Laplaces’s equation within the MIZ boundaries, while other published definitions each satisfy only one of the desired properties. When defining MIZ spatial average width from streamline results, the rationale for averaging with respect to distance along both MIZ boundaries was left implicit in prior studies. Here it is made rigorous by developing and applying the mathematics of an analytically tractable idealization of MIZ geometry—the eccentric annulus. Finally, satellite-retrieved Arctic sea ice concentrations are used to investigate how well streamline-based MIZ spatial average width is approximated by alternative definitions that lack desirable mathematical properties or local width values but offer computational efficiency.

Current affiliation: Department of Mathematics, Oregon State University, Corvallis, Oregon.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Courtenay Strong, court.strong@utah.edu
Save
  • Arntsen, A. E., A. J. Song, D. K. Perovich, and J. A. Richter-Menge, 2015: Observations of the summer breakup of an Arctic sea ice cover. Geophys. Res. Lett., 42, 80578063, doi:10.1002/2015GL065224.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barber, D. G., and Coauthors, 2015: Selected physical, biological and biogeochemical implications of a rapidly changing Arctic Marginal Ice Zone. Prog. Oceanogr., 139, 122150, doi:10.5194/tc-6-881-2012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brown, J. W., and R. V. Churchill, 2009: Complex Variables and Applications. McGraw-Hill, 468 pp.

  • Cavalieri, D. J., and C. L. Parkinson, 2012: Arctic sea ice variability and trends, 1979–2010. Cryosphere, 6, 881889, doi:10.5194/tcd-6-957-2012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Comiso, J. C., 2006: Abrupt decline in Arctic winter sea ice cover. Geophys. Res. Lett., 33, L18504, doi:10.1029/2006GL027341.

  • Comiso, J. C., 2012: Large decadal decline of the Arctic multiyear ice cover. J. Climate, 25, 11761193, doi:10.1175/JCLI-D-11-00113.1.

  • Comiso, J. C., and H. J. Zwally, 1984: Concentration gradients and growth/decay characteristics of the seasonal sea ice cover. J. Geophys. Res., 89, 80818103, doi:10.1029/JC089iC05p08081.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Glendening, J. W., 1994: Dependence of boundary layer structure near an ice-edge coastal front upon geostrophic wind direction. J. Geophys. Res., 99, 55695581, doi:10.1029/93JD02925.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jones, S. E., B. R. Buchbinder, and I. Aharon, 2000: Three-dimensional mapping of cortical thickness using Laplace’s equation. Hum. Brain Mapp., 11, 1232, doi:10.1002/1097-0193(200009)11:1<12::AID-HBM20>3.0.CO;2-K.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lagarias, J., J. A. Reeds, M. H. Wright, and P. E. Wright, 1998: Convergence properties of the Nelder–Mead simplex method in low dimensions. SIAM J. Optim., 9, 112147, doi:10.1137/S1052623496303470.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lee, C. M., and Coauthors, 2012: Marginal Ice Zone (MIZ) Program: Science and experiment plan. Applied Physics Laboratory, University of Washington, Tech. Rep. APL-UW 1201, 48 pp.

  • Lindsay, R., and Coauthors, 2012: Seasonal forecasts of Arctic sea ice initialized with observations of ice thickness. Geophys. Res. Lett., 39, L21502, doi:10.1029/2012GL053576.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Livina, V. N., and T. M. Lenton, 2013: A recent tipping point in the Arctic sea-ice cover: Abrupt and persistent increase in the seasonal cycle since 2007. Cryosphere, 7, 275286, doi:10.5194/tc-7-275-2013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Meier, W., F. Fetterer, M. Savoie, S. Mallory, R. Duerr, and J. Stroeve, 2012: NOAA/NSIDC Climate Data Record of Passive Microwave Sea Ice Concentration, version 2 (updated 2016). National Snow and Ice Data Center, accessed 11 November 2016, doi:10.7265/N55M63M1.

    • Crossref
    • Export Citation
  • NIC, 2016: Products. Naval Ice Center. [Available online at http://www.natice.noaa.gov/Main_Products.htm.]

  • Perovich, D. K., and K. F. Jones, 2014: The seasonal evolution of sea ice floe size distribution. J. Geophys. Res. Oceans, 119, 87678777, doi:10.1002/2014JC010136.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Perrette, M., A. Yool, G. D. Quartly, and E. E. Popova, 2010: Near-ubiquity of ice-edge blooms in the Arctic. Biogeosciences, 8, 515524, doi:10.5194/bg-8-515-2011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Polyakov, I. V., J. E. Walsh, and R. Kwok, 2012: Recent changes of Arctic multiyear sea ice coverage and the likely causes. Bull. Amer. Meteor. Soc., 93, 145151, doi:10.1175/BAMS-D-11-00070.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Post, E., and Coauthors, 2013: Ecological consequences of sea-ice decline. Science, 341, 519524, doi:10.1126/science.1235225.

  • Ribic, C. A., D. G. Ainley, and W. Fraser, 1991: Habitat selection by marine mammals in the marginal ice zone. Antarct. Sci., 3, 181186, doi:10.1017/S0954102091000214.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rogers, T. S., J. E. Walsh, T. S. Rupp, L. W. Brigham, and M. Sfraga, 2013: Future Arctic marine access: Analysis and evaluation of observations, models, and projections of sea ice. Cryosphere, 7, 321332, doi:10.5194/tc-7-321-2013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schmale, J., M. Lisowska, and M. Smieszek, 2013: Future Arctic research: Integrative approaches to scientific and methodological challenges. Eos, Trans. Amer. Geophys. Union, 94, 292–292, doi:10.1002/2013EO330004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shaw, W. J., R. L. Pauley, T. M. Gobel, and L. F. Radke, 1991: A case study of atmospheric boundary layer mean structure for flow parallel to the ice edge: Aircraft observations from CEAREX. J. Geophys. Res., 96, 46914708, doi:10.1029/90JC01953.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Squire, V. A., 1998: The marginal ice zone. Physics of Ice-covered Seas, M. Lepparanta, Ed., Vol. 1, Helsinki University Printing House, 381–446.

  • Squire, V. A., 2007: Of ocean waves and sea-ice revisited. Cold Reg. Sci. Technol., 49, 110133, doi:10.1016/j.coldregions.2007.04.007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stammerjohn, S., R. Massom, D. Rind, and D. Martinson, 2012: Regions of rapid sea ice change: An inter-hemispheric seasonal comparison. Geophys. Res. Lett., 39, L06501, doi:10.1029/2012GL050874.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Steele, M., S. Dickinson, J. Zhang, and R. W. Lindsay, 2015: Seasonal ice loss in the Beaufort Sea: Toward synchrony and prediction. J. Geophys. Res. Oceans, 120, 11181132, doi:10.1002/2014JC010247.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stephenson, S. R., L. C. Smith, and J. A. Agnew, 2011: Divergent long-term trajectories of human access to the Arctic. Nat. Climate Change, 1, 156160, doi:10.1038/nclimate1120.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stroeve, J. C., S. Jenouvrier, G. G. Campbell, C. Barbraud, and K. Delord, 2016: Mapping and assessing variability in the Antarctic marginal ice zone, pack ice and coastal polynyas in two sea ice algorithms with implications on breeding success of snow petrels. Cryosphere, 10, 18231843, doi:10.5194/tc-10-1823-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Strong, C., 2012: Atmospheric influence on Arctic marginal ice zone position and width in the Atlantic sector, February–April 1979–2010. Climate Dyn., 39, 30913102, doi:10.1007/s00382-012-1356-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Strong, C., and I. G. Rigor, 2013: Arctic marginal ice zone trending wider in summer and narrower in winter. Geophys. Res. Lett., 40, 48644868, doi:10.1002/grl.50928.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thomson, J., and W. E. Rogers, 2014: Swell and sea in the emerging Arctic Ocean. Geophys. Res. Lett., 41, 31363140, doi:10.1002/2014GL059983.

  • Tilling, R. L., A. Ridout, A. Shepherd, and D. J. Wingham, 2015: Increased Arctic sea ice volume after anomalously low melting in 2013. Nat. Geosci., 8, 643646, doi:10.1038/ngeo2489.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wadhams, P., 2000: Ice in the Ocean. Gordon and Breach Science Publishers, 351 pp.

  • Weeks, W. F., 2010: On Sea Ice. University of Alaska Press, 664 pp.

  • Williams, R., and Coauthors, 2014: Counting whales in a challenging, changing environment. Sci. Rep., 4, 4170, doi:10.1038/srep04170.

  • Williams, T. D., L. G. Bennetts, V. A. Squire, D. Dumont, and L. Bertino, 2013: Wave–ice interactions in the marginal ice zone. Part 2: Numerical implementation and sensitivity studies along 1D transects of the ocean surfaces. Ocean Modell., 71, 92101, doi:10.1016/j.ocemod.2013.05.011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • WMO, 2009: WMO sea-ice nomenclature. WMO/OMM/BMO 259, Suppl. 5, 23 pp. [Available online at http://www.jcomm.info/index.php?option=com_oe&task=viewDocumentRecord&docID=4438.]

  • Zang, J., A. Schweiger, M. Steele, and H. Stern, 2015: Sea ice floe size distribution in the marginal ice zone: Theory and numerical experiments. J. Geophys. Res. Oceans, 120, 34843498, doi:10.1002/2015JC010770.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1173 251 19
PDF Downloads 997 238 11