A Methodology for Estimating the Parameters in Three-Dimensional Cohesive Sediment Transport Models by Assimilating In Situ Observations with the Adjoint Method

Daosheng Wang Physical Oceanography Laboratory/CIMST, Ocean University of China, and Qingdao National Laboratory for Marine Science and Technology, Qingdao, China

Search for other papers by Daosheng Wang in
Current site
Google Scholar
PubMed
Close
,
Jicai Zhang Institute of Physical Oceanography, Ocean College, Zhejiang University, Zhoushan, China
State Key Laboratory of Satellite Ocean Environment Dynamics, Second Institute of Oceanography, Hangzhou, China

Search for other papers by Jicai Zhang in
Current site
Google Scholar
PubMed
Close
,
Ya Ping Wang School of Geographic and Oceanographic Sciences, Nanjing University, Nanjing, China

Search for other papers by Ya Ping Wang in
Current site
Google Scholar
PubMed
Close
,
Xianqing Lv Physical Oceanography Laboratory/CIMST, Ocean University of China, and Qingdao National Laboratory for Marine Science and Technology, Qingdao, China

Search for other papers by Xianqing Lv in
Current site
Google Scholar
PubMed
Close
,
Yang Yang School of Geographic and Oceanographic Sciences, Nanjing University, Nanjing, China

Search for other papers by Yang Yang in
Current site
Google Scholar
PubMed
Close
,
Daidu Fan State Key Laboratory of Marine Geology, Tongji University, Shanghai, China

Search for other papers by Daidu Fan in
Current site
Google Scholar
PubMed
Close
, and
Shu Gao School of Geographic and Oceanographic Sciences, Nanjing University, Nanjing, China

Search for other papers by Shu Gao in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The model parameters in the suspended cohesive sediment transport model are quite important for the accurate simulation of suspended sediment concentrations (SSCs). Based on a three-dimensional cohesive sediment transport model and its adjoint model, the in situ observed SSCs at four stations are assimilated to simulate the SSCs and to estimate the parameters in Hangzhou Bay in China. Numerical experimental results show that the adjoint method can efficiently improve the simulation results, which can benefit the prediction of SSCs. The time series of the modeled SSCs present a clear semidiurnal variation, in which the maximal SSCs occur during the flood tide and near the high water level due to the large current speeds. Sensitivity experiments prove that the estimated results of the settling velocity and resuspension rate, especially the temporal variations, are robust to the model settings. The temporal variations of the estimated settling velocity are negatively correlated with the tidal elevation. The main reason is that the mean size of the suspended sediments can be reduced during the flood tide, which consequently decreases the settling velocity according to Stokes’s law, and it is opposite in the ebb tide. The temporal variations of the estimated resuspension rate and the current speeds have a significantly positive correlation, which accords with the dynamics of the resuspension rate. The temporal variations of the settling velocity and resuspension rate are reasonable from the viewpoint of physics, indicating the adjoint method can be an effective tool for estimating the parameters in the sediment transport models.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Jicai Zhang, jicai_zhang@163.com

Abstract

The model parameters in the suspended cohesive sediment transport model are quite important for the accurate simulation of suspended sediment concentrations (SSCs). Based on a three-dimensional cohesive sediment transport model and its adjoint model, the in situ observed SSCs at four stations are assimilated to simulate the SSCs and to estimate the parameters in Hangzhou Bay in China. Numerical experimental results show that the adjoint method can efficiently improve the simulation results, which can benefit the prediction of SSCs. The time series of the modeled SSCs present a clear semidiurnal variation, in which the maximal SSCs occur during the flood tide and near the high water level due to the large current speeds. Sensitivity experiments prove that the estimated results of the settling velocity and resuspension rate, especially the temporal variations, are robust to the model settings. The temporal variations of the estimated settling velocity are negatively correlated with the tidal elevation. The main reason is that the mean size of the suspended sediments can be reduced during the flood tide, which consequently decreases the settling velocity according to Stokes’s law, and it is opposite in the ebb tide. The temporal variations of the estimated resuspension rate and the current speeds have a significantly positive correlation, which accords with the dynamics of the resuspension rate. The temporal variations of the settling velocity and resuspension rate are reasonable from the viewpoint of physics, indicating the adjoint method can be an effective tool for estimating the parameters in the sediment transport models.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Jicai Zhang, jicai_zhang@163.com
Save
  • Agrawal, Y. C., and H. C. Pottsmith, 2000: Instruments for particle size and settling velocity observations in sediment transport. Mar. Geol., 168, 89114, doi:10.1016/S0025-3227(00)00044-X.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Amoudry, L. O., 2014: Extension of k-ω turbulence closure to two-phase sediment transport modelling: Application to oscillatory sheet flows. Adv. Water Resour., 72, 110121, doi:10.1016/j.advwatres.2014.07.006.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Amoudry, L. O., and A. J. Souza, 2011: Deterministic coastal morphological and sediment transport modeling: A review and discussion. Rev. Geophys., 49, RG2002, doi:10.1029/2010RG000341.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Anderson, D. L. T., J. Sheinbaum, and K. Haines, 1996: Data assimilation in ocean models. Rep. Prog. Phys., 59, 12091266, doi:10.1088/0034-4885/59/10/001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bricker, J. D., S. Inagaki, S. G. Monismith, and A. M. Asce, 2005: Bed drag coefficient variability under wind waves in a tidal estuary. J. Hydraul. Eng., 131, 497508, doi:10.1061/(ASCE)0733-9429(2005)131:6(497).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cai, L., D. L. Tang, X. Li, H. Zheng, and W. Shao, 2015: Remote sensing of spatial-temporal distribution of suspended sediment and analysis of related environmental factors in Hangzhou Bay, China. Remote Sens. Lett., 6, 597603, doi:10.1080/2150704X.2015.1062158.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, H., A. Cao, J. Zhang, C. Miao, and X. Lv, 2014: Estimation of spatially varying open boundary conditions for a numerical internal tidal model with adjoint method. Math. Comput. Simul., 97, 1438, doi:10.1016/j.matcom.2013.08.005.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cloern, J. E., 1987: Turbidity as a control on phytoplankton biomass and productivity in estuaries. Cont. Shelf Res., 7, 13671381, doi:10.1016/0278-4343(87)90042-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Du, P., P. Ding, and K. Hu, 2010: Simulation of three-dimensional cohesive sediment transport in Hangzhou Bay, China. Acta Oceanol. Sin., 29, 98106, doi:10.1007/s13131-010-0028-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dyer, K. R., and Coauthors, 1996: A comparison of in situ techniques for estuarine floc settling velocity measurements. J. Sea Res., 36, 1529, doi:10.1016/S1385-1101(96)90766-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Egbert, G. D., and S. Y. Erofeeva, 2002: Efficient inverse modeling of barotropic ocean tides. J. Atmos. Oceanic Technol., 19, 183204, doi:10.1175/1520-0426(2002)019<0183:EIMOBO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Elbern, H., A. Strunk, H. Schmidt, and O. Talagrand, 2007: Emission rate and chemical state estimation by 4-dimensional variational inversion. Atmos. Chem. Phys., 7, 37493769, doi:10.5194/acp-7-3749-2007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fennessy, M. J., K. R. Dyer, and D. A. Huntley, 1994: INSSEV: An instrument to measure the size and settling velocity of flocs in situ. Mar. Geol., 117, 107117, doi:10.1016/0025-3227(94)90009-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gao, X., Z. Wei, X. Lv, Y. Wang, and G. Fang, 2015: Numerical study of tidal dynamics in the South China Sea with adjoint method. Ocean Modell., 92, 101114, doi:10.1016/j.ocemod.2015.05.010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ge, J., F. Shen, W. Guo, C. Chen, and P. Ding, 2015: Estimation of critical shear stress for erosion in the Changjiang Estuary: A synergy research of observation, GOCI sensing and modeling. J. Geophys. Res. Oceans, 120, 84398465, doi:10.1002/2015JC010992.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Guan, W. B., S. C. Kot, and E. Wolanski, 2005: 3-D fluid-mud dynamics in the Jiaojiang Estuary, China. Estuarine Coastal Shelf Sci., 65, 747762, doi:10.1016/j.ecss.2005.05.017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gunzburger, M., 2000: Adjoint equation-based methods for control problems in incompressible, viscous flows. Flow Turbul. Combust., 65, 249272, doi:10.1023/A:1011455900396.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Guy, R. D., and A. L. Fogelson, 2008: A wave propagation algorithm for viscoelastic fluids with spatially and temporally varying properties. Comput. Methods Appl. Mech. Eng., 197, 22502264, doi:10.1016/j.cma.2007.11.022.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • He, X., Y. Bai, D. Pan, N. Huang, X. Dong, J. Chen, and Q. Cui, 2013: Using geostationary satellite ocean color data to map the diurnal dynamics of suspended particulate matter in coastal waters. Remote Sens. Environ., 133, 225239, doi:10.1016/j.rse.2013.01.023.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hu, K., P. Ding, Z. Wang, and S. Yang, 2009: A 2D/3D hydrodynamic and sediment transport model for the Yangtze Estuary, China. J. Mar. Syst., 77, 114136, 10.1016/j.jmarsys.2008.11.014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hwang, P. A., 2005: Temporal and spatial variation of the drag coefficient of a developing sea under steady wind-forcing. J. Geophys. Res., 110, C07024, 10.1029/2005JC002912.

    • Search Google Scholar
    • Export Citation
  • Ilyina, T., T. Pohlmann, G. Lammel, and J. Sündennann, 2006: A fate and transport ocean model for persistent organic pollutants and its application to the North Sea. J. Mar. Syst., 63, 119, doi:10.1016/j.jmarsys.2006.04.007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jarosz, E., D. A. Mitchell, D. W. Wang, and W. J. Teague, 2007: Bottom-up determination of air-sea momentum exchange under a major tropical cyclone. Science, 315, 17071709, doi:10.1126/science.1136466.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kurokawa, J. I., K. Yumimoto, I. Uno, and T. Ohara, 2009: Adjoint inverse modeling of NOx emissions over eastern China using satellite observations of NO2 vertical column densities. Atmos. Environ., 43, 18781887, doi:10.1016/j.atmosenv.2008.12.030.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Leupi, C., M. S. Altinakar, and M. Deville, 2008: Numerical modeling of cohesive sediments dynamics in estuaries: Part I—Description of the model and simulations in the Po River Estuary. Int. J. Numer. Methods Fluids, 57, 237263, doi:10.1002/fld.1622.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lozovatsky, I., Z. Liu, H. Wei, and H. J. S. Fernando, 2008: Tides and mixing in the northwestern East China Sea, Part II: Near-bottom turbulence. Cont. Shelf Res., 28, 338350, doi:10.1016/j.csr.2007.08.007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lu, P., Z. Li, B. Cheng, and M. Leppäranta, 2011: A parameterization of the ice-ocean drag coefficient. J. Geophys. Res., 116, C07019, doi:10.1029/2010JC006878.

    • Search Google Scholar
    • Export Citation
  • Lu, X., and J. Zhang, 2006: Numerical study on spatially varying bottom friction coefficient of a 2D tidal model with adjoint method. Cont. Shelf Res., 26, 19051923, doi:10.1016/j.csr.2006.06.007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ludwick, J. C., 1975: Variations in the boundary-drag coefficient in the tidal entrance to Chesapeake Bay, Virginia. Mar. Geol., 19, 1928, doi:10.1016/0025-3227(75)90003-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Manning, A. J., and D. H. Schoellhamer, 2013: Factors controlling floc settling velocity along a longitudinal estuarine transect. Mar. Geol., 345, 266280, doi:10.1016/j.margeo.2013.06.018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mayer, L. M., R. G. Keil, S. A. Macko, S. B. Joye, K. C. Ruttenberg, and R. C. Aller, 1998: Importance of suspended particulates in riverine delivery of bioavailable nitrogen to coastal zones. Global Biogeochem. Cycles, 12, 573579, doi:10.1029/98GB02267.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mikkelsen, O., and M. Pejrup, 2001: The use of a LISST-100 laser particle sizer for in-situ estimates of floc size, density and settling velocity. Geo-Mar. Lett., 20, 187195, doi:10.1007/s003670100064.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Miller, R. L., and J. F. Cruise, 1995: Effects of suspended sediments on coral growth: Evidence from remote sensing and hydrologic modeling. Remote Sens. Environ., 53, 177187, doi:10.1016/0034-4257(95)00081-B.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Miller, R. L., and B. A. Mckee, 2004: Using MODIS Terra 250 m imagery to map concentrations of total suspended matter in coastal waters. Remote Sens. Environ., 93, 259266, doi:10.1016/j.rse.2004.07.012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Myint, S. W., and N. D. Walker, 2002: Quantification of surface suspended sediments along a river dominated coast with NOAA AVHRR and SeaWiFS measurements: Louisiana, USA. Int. J. Remote Sens., 23, 32293249, doi:10.1080/01431160110104700.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Navon, I. M., 1998: Practical and theoretical aspects of adjoint parameter estimation and identifiability in meteorology and oceanography. Dyn. Atmos. Oceans, 27, 5579, doi:10.1016/S0377-0265(97)00032-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Neukermans, G., K. G. Ruddick, and N. Greenwood, 2012: Diurnal variability of turbidity and light attenuation in the southern North Sea from the SEVIRI geostationary sensor. Remote Sens. Environ., 124, 564580, doi:10.1016/j.rse.2012.06.003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Petus, C., G. Chust, F. Gohin, D. Doxaran, J.-M. Froidefond, and Y. Sagarminaga, 2010: Estimating turbidity and total suspended matter in the Adour River plume (South Bay of Biscay) using MODIS 250-m imagery. Cont. Shelf Res., 30, 379392, doi:10.1016/j.csr.2009.12.007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Powell, M. D., P. J. Vickery, and T. A. Reinhold, 2003: Reduced drag coefficient for high wind speeds in tropical cyclones. Nature, 422, 279283, doi:10.1038/nature01481.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ryu, J. H., J. K. Choi, J. Eom, and J. H. Ahn, 2011: Temporal variation in Korean coastal waters using Geostationary Ocean Color Imager. J. Coastal Res., SI64, 17311735.

    • Search Google Scholar
    • Export Citation
  • Salama, M. S., and F. Shen, 2010: Simultaneous atmospheric correction and quantification of suspended particulate matters from orbital and geostationary earth observation sensors. Estuarine Coastal Shelf Sci., 86, 499511, doi:10.1016/j.ecss.2009.10.001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Song, Y., and D. Haidvogel, 1994: A semi-implicit ocean circulation model using a generalized topography-following coordinate system. J. Comput. Phys., 115, 228244, doi:10.1006/jcph.1994.1189.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thacker, W. C., and R. B. Long, 1988: Fitting dynamics to data. J. Geophys. Res., 93, 12271240, doi:10.1029/JC093iC02p01227.

  • Voulgaris, G., and S. T. Meyers, 2004: Temporal variability of hydrodynamics, sediment concentration and sediment settling velocity in a tidal creek. Cont. Shelf Res., 24, 16591683, doi:10.1016/j.csr.2004.05.006.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, D., A. Cao, J. Zhang, D. Fan, Y. Liu, and Y. Zhang, 2017: A three-dimensional cohesive sediment transport model with data assimilation: Model development, sensitivity analysis and parameter estimation. Estuarine Coastal Shelf Sci., doi:10.1016/j.ecss.2016.08.027, in press.

    • Search Google Scholar
    • Export Citation
  • Wang, H., and H.-C. Xue, 1990: China-U.S. joint muddy coast research, part 1, a review of hydrological and sedimentary processes in Hangzhou May, China. Coastal and Oceanographic Engineering Department, University of Florida Rep. UFL/COEL-90/014, 60 pp. [Available online at http://ufdcimages.uflib.ufl.edu/UF/00/08/09/86/00001/UF00080986.pdf.]

  • Wang, X. H., and N. Pinardi, 2002: Modeling the dynamics of sediment transport and resuspension in the northern Adriatic Sea. J. Geophys. Res., 107, 3225, doi:10.1029/2001JC001303.

    • Search Google Scholar
    • Export Citation
  • Wang, Y. P., S. Gao, and X. Ke, 2004: Observations of boundary layer parameters and suspended sediment transport over the intertidal flats of northern Jiangsu, China. Acta Oceanol. Sin., 23, 437448.

    • Search Google Scholar
    • Export Citation
  • Wang, Y. P., G. Voulgaris, Y. Li, Y. Yang, J. Gao, J. Chen, and S. Gao, 2013: Sediment resuspension, flocculation, and settling in a macrotidal estuary. J. Geophys. Res. Oceans, 118, 55915608, doi:10.1002/jgrc.20340.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Warrick, J. A., L. A. K. Mertes, D. A. Siegel, and C. Mackenzie, 2004: Estimating suspended sediment concentrations in turbid coastal waters of the Santa Barbara Channel with SeaWiFS. Int. J. Remote Sens., 25, 19952002, doi:10.1080/01431160310001619535.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Winterwerp, J. C., 2002: On the flocculation and settling velocity of estuarine mud. Cont. Shelf Res., 22, 13391360, doi:10.1016/S0278-4343(02)00010-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xia, X. M., Y. Li, H. Yang, C. Y. Wu, T. H. Sing, and H. K. Pong, 2004: Observations on the size and settling velocity distributions of suspended sediment in the Pearl River Estuary, China. Cont. Shelf Res., 24, 18091826, doi:10.1016/j.csr.2004.06.009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, Z., and J. M. Hamrick, 2003: Variational inverse parameter estimation in a cohesive sediment transport mode: An adjoint approach. J. Geophys. Res., 108, 3055, doi:10.1029/2002JC001423.

    • Search Google Scholar
    • Export Citation
  • Yu, L., and J. J. O’Brien, 1992: On the initial condition in parameter estimation. J. Phys. Oceanogr., 22, 13611364, doi:10.1175/1520-0485(1992)022<1361:OTICIP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, J., and H. Chen, 2013: Semi-idealized study on estimation of partly and fully space varying open boundary conditions for tidal models. Abstr. Appl. Anal., 2013, 282593, doi:10.1155/2013/282593.

    • Search Google Scholar
    • Export Citation
  • Zhang, M., J. Tang, Q. Dong, Q. T. Song, and D. Jing, 2010: Retrieval of total suspended matter concentration in the Yellow and East China Seas from MODIS imagery. Remote Sens. Environ., 114, 392403, doi:10.1016/j.rse.2009.09.016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, N., L. Sun, and Q. Pang, 2015: Application of mathematical model for suspended sediment transport in mud-dumping ground of Sino-Myanmar crude oil pipeline and wharf engineering. Resources, Environment and Engineering II: Proceedings of the Second Technical Congress on Resources, Environment and Engineering (CREE 2015), L. Xie, Ed., CRC Press, 331–336, doi:10.1201/b19136-52.

    • Crossref
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 355 122 51
PDF Downloads 167 35 6