On the Equilibration of Numerical Simulation of Internal Tide: A Case Study around the Hawaiian Ridge

Guang-Zhen Jin Key Laboratory of Physical Oceanography, Ocean University of China, Ministry of Education, Qingdao, China

Search for other papers by Guang-Zhen Jin in
Current site
Google Scholar
PubMed
Close
,
An-Zhou Cao Ocean College, Zhejiang University, Zhoushan, China

Search for other papers by An-Zhou Cao in
Current site
Google Scholar
PubMed
Close
, and
Xian-Qing Lv Key Laboratory of Physical Oceanography, Ocean University of China, Ministry of Education, Qingdao, China

Search for other papers by Xian-Qing Lv in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

To investigate the equilibration of numerical simulation (ENS) of internal tide, a three-dimensional isopycnic coordinate internal tide model is applied to simulate the M2 internal tide on idealized topography and around the Hawaiian Ridge. An idealized experiment is carried out on a Gaussian topography, and the temporal variations of the baroclinic velocity and the baroclinic energy flux are analyzed, then ENS is studied, and two criteria are presented. Moreover, the impacts of four parameters [horizontal and vertical eddy viscosity coefficients, bottom friction coefficient, and damping coefficient (to parameterize the nonhydrostatic processes in the model)] on ENS during numerical simulations, the baroclinic velocity, the baroclinic tidal energy, and the baroclinic energy flux are investigated. It appears that ENS for the M2 internal tide is more sensitive to the horizontal eddy viscosity coefficient and the damping coefficient. To further examine the criteria of ENS, a numerical experiment is carried out to simulate the M2 internal tidal constituent near the Hawaiian Ridge. The simulated surface tide shows good agreement with results from the Oregon State University tidal model and TOPEX/Poseidon (T/P) observations. The simulation results indicate that a 50 M2 tidal period (25.88 days) run is capable of ensuring ENS for the M2 internal tide in this case. In short, this paper presents a method and two criteria for examining ENS for internal tides for modelers.

Denotes content that is immediately available upon publication as open access.

Supplemental information related to this paper is available at the Journals Online website: http://dx.doi.org/10.1175/JTECH-D-16-0207.s1.

© 2017 American Meteorological Society.

Corresponding author: Xian-Qing Lv, xqinglv@ouc.edu.cn

Abstract

To investigate the equilibration of numerical simulation (ENS) of internal tide, a three-dimensional isopycnic coordinate internal tide model is applied to simulate the M2 internal tide on idealized topography and around the Hawaiian Ridge. An idealized experiment is carried out on a Gaussian topography, and the temporal variations of the baroclinic velocity and the baroclinic energy flux are analyzed, then ENS is studied, and two criteria are presented. Moreover, the impacts of four parameters [horizontal and vertical eddy viscosity coefficients, bottom friction coefficient, and damping coefficient (to parameterize the nonhydrostatic processes in the model)] on ENS during numerical simulations, the baroclinic velocity, the baroclinic tidal energy, and the baroclinic energy flux are investigated. It appears that ENS for the M2 internal tide is more sensitive to the horizontal eddy viscosity coefficient and the damping coefficient. To further examine the criteria of ENS, a numerical experiment is carried out to simulate the M2 internal tidal constituent near the Hawaiian Ridge. The simulated surface tide shows good agreement with results from the Oregon State University tidal model and TOPEX/Poseidon (T/P) observations. The simulation results indicate that a 50 M2 tidal period (25.88 days) run is capable of ensuring ENS for the M2 internal tide in this case. In short, this paper presents a method and two criteria for examining ENS for internal tides for modelers.

Denotes content that is immediately available upon publication as open access.

Supplemental information related to this paper is available at the Journals Online website: http://dx.doi.org/10.1175/JTECH-D-16-0207.s1.

© 2017 American Meteorological Society.

Corresponding author: Xian-Qing Lv, xqinglv@ouc.edu.cn
Save
  • Alford, M. H., and Coauthors, 2015: The formation and fate of internal waves in the South China Sea. Nature, 521, 6569, doi:10.1038/nature14399.

  • Amante, C., and B. W. Eakins, 2009: ETOPO1 1 arc-minute global relief model: Procedures, data sources and analysis. NOAA Tech. Memo. NESDIS NGDC-24, 19 pp., doi:10.7289/V5C8276M. [Available online at https://docs.lib.noaa.gov/noaa_documents/NESDIS/TM_NESDIS_NGDC/TM_NESDIS_NGDC_24.pdf.]

  • Balmforth, N., G. Ierley, and W. Young, 2002: Tidal conversion by subcritical topography. J. Phys. Oceanogr., 32, 29002914, doi:10.1175/1520-0485(2002)032<2900:TCBST>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bell, T., 1975: Topographically generated internal waves in the open ocean. J. Geophys. Res., 80, 320327, doi:10.1029/JC080i003p00320.

  • Buijsman, M. C., S. Legg, and J. Klymak, 2012: Double-ridge internal tide interference and its effect on dissipation in Luzon Strait. J. Phys. Oceanogr., 42, 13371356, doi:10.1175/JPO-D-11-0210.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Buijsman, M. C., and Coauthors, 2013: Three-dimensional double-ridge internal tide resonance in Luzon Strait. J. Phys. Oceanogr., 44, 850869, doi:10.1175/JPO-D-13-024.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Carter, G. S., and M. A. Merrifield, 2007: Open boundary conditions for regional tidal simulations. Ocean Modell., 18, 194209, doi:10.1016/j.ocemod.2007.04.003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Carter, G. S., and Coauthors, 2008: Energetics of M2 barotropic-to-baroclinic tidal conversion at the Hawaiian Islands. J. Phys. Oceanogr., 38, 22052223, doi:10.1175/2008JPO3860.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cummins, P. F., and L.-Y. Oey, 1997: Simulation of barotropic and baroclinic tides off northern British Columbia. J. Phys. Oceanogr., 27, 762781, doi:10.1175/1520-0485(1997)027<0762:SOBABT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Di Lorenzo, E., W. R. Young, and S. L. Smith, 2006: Numerical and analytical estimates of M2 tidal conversion at steep oceanic ridges. J. Phys. Oceanogr., 36, 10721084, doi:10.1175/JPO2880.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Duda, T. F., and L. Rainville, 2008: Diurnal and semidiurnal internal tide energy flux at a continental slope in the South China Sea. J. Geophys. Res., 113, C03025, doi:10.1029/2007JC004418.

    • Search Google Scholar
    • Export Citation
  • Dunphy, M., and K. G. Lamb, 2014: Focusing and vertical mode scattering of the first mode internal tide by mesoscale eddy interaction. J. Geophys. Res. Oceans, 119, 523536, doi:10.1002/2013JC009293.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dushaw, B. D., B. M. Howe, B. D. Cornuelle, P. F. Worcester, and D. S. Luther, 1995: Barotropic and baroclinic tides in the central North Pacific Ocean determined from long-range reciprocal acoustic transmissions. J. Phys. Oceanogr., 25, 631647, doi:10.1175/1520-0485(1995)025<0631:BABTIT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Egbert, G. D., and S. Y. Erofeeva, 2002: Efficient inverse modeling of barotropic ocean tides. J. Atmos. Oceanic Technol., 19, 183204, doi:10.1175/1520-0426(2002)019<0183:EIMOBO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fan, L.-L., B. Wang, and X.-Q. Lv, 2011: Cotidal charts near Hawaii derived from TOPEX/Poseidon altimetry data. J. Atmos. Oceanic Technol., 28, 606614, doi:10.1175/2010JTECHO809.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fang, G., Y.-K. Kwok, K. Yu, and Y. Zhu, 1999: Numerical simulation of principal tidal constituents in the South China Sea, Gulf of Tonkin and Gulf of Thailand. Cont. Shelf Res., 19, 845869, doi:10.1016/S0278-4343(99)00002-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Floor, J. W., F. Auclair, and P. Marsaleix, 2011: Energy transfers in internal tide generation, propagation and dissipation in the deep ocean. Ocean Modell., 38, 2240, doi:10.1016/j.ocemod.2011.01.009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jan, S., C.-S. Chern, J. Wang, and S.-Y. Chao, 2007: Generation of diurnal K1 internal tide in the Luzon Strait and its influence on surface tide in the South China Sea. J. Geophys. Res., 112, C06019, doi:10.1029/2006JC004003.

    • Search Google Scholar
    • Export Citation
  • Johnston, T., and M. A. Merrifield, 2003: Internal tide scattering at seamounts, ridges, and islands. J. Geophys. Res., 108, 3180, doi:10.1029/2002JC001528.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kang, S., M. Foreman, W. Crawford, and J. Cherniawsky, 2000: Numerical modeling of internal tide generation along the Hawaiian Ridge. J. Phys. Oceanogr., 30, 10831098, doi:10.1175/1520-0485(2000)030<1083:NMOITG>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Katsumata, K., 2006: Two- and three-dimensional numerical models of internal tide generation at a continental slope. Ocean Modell., 12, 3245, doi:10.1016/j.ocemod.2005.03.001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kerry, C. G., B. S. Powell, and G. S. Carter, 2014: The impact of subtidal circulation on internal tide generation and propagation in the Philippine Sea. J. Phys. Oceanogr., 44, 13861405, doi:10.1175/JPO-D-13-0142.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Khatiwala, S., 2003: Generation of internal tides in an ocean of finite depth: Analytical and numerical calculations. Deep-Sea Res. I, 50, 321, doi:10.1016/S0967-0637(02)00132-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Klymak, J. M., M. Buijsman, S. A. Legg, and R. Pinkel, 2013: Parameterizing surface and internal tide scattering and breaking on supercritical topography: The one-and two-ridge cases. J. Phys. Oceanogr., 43, 13801397, doi:10.1175/JPO-D-12-061.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • LeBlond, P., and L. Mysak, 1978: Waves in the Ocean. Elsevier Oceanography Series, Vol. 20, Elsevier, 602 pp.

  • Legg, S., 2004a: Internal tides generated on a corrugated continental slope. Part I: Cross-slope barotropic forcing. J. Phys. Oceanogr., 34, 156173, doi:10.1175/1520-0485(2004)034<0156:ITGOAC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Legg, S., 2004b: Internal tides generated on a corrugated continental slope. Part II: Along-slope barotropic forcing. J. Phys. Oceanogr., 34, 18241838, doi:10.1175/1520-0485(2004)034<1824:ITGOAC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Legg, S., and A. Adcroft, 2003: Internal wave breaking at concave and convex continental slopes. J. Phys. Oceanogr., 33, 22242246, doi:10.1175/1520-0485(2003)033<2224:IWBACA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Legg, S., and K. M. Huijts, 2006: Preliminary simulations of internal waves and mixing generated by finite amplitude tidal flow over isolated topography. Deep-Sea Res. II, 53, 140156, doi:10.1016/j.dsr2.2005.09.014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Llewellyn Smith, S. G., and W. Young, 2002: Conversion of the barotropic tide. J. Phys. Oceanogr., 32, 15541566, doi:10.1175/1520-0485(2002)032<1554:COTBT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Locarnini, R. A., A. V. Mishonov, J. I. Antonov, T. P. Boyer, and H. E. Garcia, 2006: Temperature. Vol. 1, World Ocean Atlas 2005, NOAA Atlas NESDIS 61, 182 pp.

  • MacCready, P., and G. Pawlak, 2001: Stratified flow along a corrugated slope: Separation drag and wave drag. J. Phys. Oceanogr., 31, 28242839, doi:10.1175/1520-0485(2001)031<2824:SFAACS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Martin, J. P., D. L. Rudnick, and R. Pinkel, 2006: Spatially broad observations of internal waves in the upper ocean at the Hawaiian Ridge. J. Phys. Oceanogr., 36, 10851103, doi:10.1175/JPO2881.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mathur, M., G. S. Carter, and T. Peacock, 2014: Topographic scattering of the low‐mode internal tide in the deep ocean. J. Geophys. Res. Oceans, 119, 21652182, doi:10.1002/2013JC009152.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Miao, C., H. Chen, and X. Lu, 2011: An isopycnic-coordinate internal tide model and its application to the South China Sea. Chin. J. Oceanol. Limnol., 29, 13391356, doi:10.1007/s00343-011-1023-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nash, J. D., M. H. Alford, and E. Kunze, 2005: Estimating internal wave energy fluxes in the ocean. J. Atmos. Oceanic Technol., 22, 15511570, doi:10.1175/JTECH1784.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Niwa, Y., and T. Hibiya, 2001: Numerical study of the spatial distribution of the M2 internal tide in the Pacific Ocean. J. Geophys. Res., 106, 22 44122 449, doi:10.1029/2000JC000770.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Niwa, Y., and T. Hibiya, 2004: Three-dimensional numerical simulation of M2 internal tides in the East China Sea. J. Geophys. Res., 109, C04027, doi:10.1029/2003JC001923.

    • Search Google Scholar
    • Export Citation
  • Ponte, A. L., and B. D. Cornuelle, 2013: Coastal numerical modelling of tides: Sensitivity to domain size and remotely generated internal tide. Ocean Modell., 62, 1726, doi:10.1016/j.ocemod.2012.11.007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Powell, B., I. Janeković, G. Carter, and M. Merrifield, 2012: Sensitivity of internal tide generation in Hawaii. Geophys. Res. Lett., 39, L10606, doi:10.1029/2012GL051724.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Qian, H., P.-T. Shaw, and D. S. Ko, 2010: Generation of internal waves by barotropic tidal flow over a steep ridge. Deep-Sea Res. I, 57, 15211531, doi:10.1016/j.dsr.2010.09.001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rainville, L., T. S. Johnston, G. S. Carter, M. A. Merrifield, R. Pinkel, P. F. Worcester, and B. D. Dushaw, 2010: Interference pattern and propagation of the M2 internal tide south of the Hawaiian Ridge. J. Phys. Oceanogr., 40, 311325, doi:10.1175/2009JPO4256.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ray, R. D., and G. T. Mitchum, 1996: Surface manifestation of internal tides generated near Hawaii. Geophys. Res. Lett., 23, 21012104, doi:10.1029/96GL02050.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ray, R. D., and G. T. Mitchum, 1997: Surface manifestation of internal tides in the deep ocean: Observations from altimetry and island gauges. Prog. Oceanogr., 40, 135162, doi:10.1016/S0079-6611(97)00025-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rudnick, D. L., and Coauthors, 2003: From tides to mixing along the Hawaiian Ridge. Science, 301, 355357, doi:10.1126/science.1085837.

  • Shaw, P.-T., and S.-Y. Chao, 2006: A nonhydrostatic primitive-equation model for studying small-scale processes: An object-oriented approach. Cont. Shelf Res., 26, 14161432, doi:10.1016/j.csr.2006.01.018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shaw, P.-T., D. S. Ko, and S.-Y. Chao, 2009: Internal solitary waves induced by flow over a ridge: With applications to the northern South China Sea. J. Geophys. Res., 114, C02019, doi:10.1029/2008JC005007.

    • Search Google Scholar
    • Export Citation
  • Simmons, H. L., R. W. Hallberg, and B. K. Arbic, 2004: Internal wave generation in a global baroclinic tide model. Deep-Sea Res. II, 51, 30433068, doi:10.1016/j.dsr2.2004.09.015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Song, D., T. Pohlmann, X. Chen, and D. Wu, 2010: The role of sea water viscidity in modeling the vertical movement of internal tides. Ocean Modell., 34, 6369, doi:10.1016/j.ocemod.2010.04.005.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • St. Laurent, L., and C. Garrett, 2002: The role of internal tides in mixing the deep ocean. J. Phys. Oceanogr., 32, 28822899, doi:10.1175/1520-0485(2002)032<2882:TROITI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thorpe, S., 1992: The generation of internal waves by flow over the rough topography of a continental slope. Proc. Roy. Soc. London, 439A, 115130, doi:10.1098/rspa.1992.0137.

    • Search Google Scholar
    • Export Citation
  • Winters, K. B., and E. A. D’Asaro, 1997: Direct simulation of internal wave energy transfer. J. Phys. Oceanogr., 27, 19371945, doi:10.1175/1520-0485(1997)027<1937:DSOIWE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, L., C. Miao, and W. Zhao, 2013: Patterns of K1 and M2 internal tides and their seasonal variations in the northern South China Sea. J. Oceanogr., 69, 481494, doi:10.1007/s10872-013-0183-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xu, Z., K. Liu, B. Yin, Z. Zhao, Y. Wang, and Q. Li, 2016: Long‐range propagation and associated variability of internal tides in the South China Sea. J. Geophys. Res. Oceans, 121, 82688286, doi:10.1002/2016JC012105.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhao, Z., M. H. Alford, J. A. MacKinnon, and R. Pinkel, 2010: Long-range propagation of the semidiurnal internal tide from the Hawaiian Ridge. J. Phys. Oceanogr., 40, 713736, doi:10.1175/2009JPO4207.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhao, Z., M. H. Alford, J. Girton, T. S. Johnston, and G. Carter, 2011: Internal tides around the Hawaiian Ridge estimated from multisatellite altimetry. J. Geophys. Res., 116, C12039, doi:10.1029/2011JC007045.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 256 84 13
PDF Downloads 170 29 3