Calculating the Meridional Volume, Heat, and Freshwater Transports from an Observing System in the Subpolar North Atlantic: Observing System Simulation Experiment

Feili Li Earth and Ocean Sciences, Nicholas School of the Environment, Duke University, Durham, North Carolina

Search for other papers by Feili Li in
Current site
Google Scholar
PubMed
Close
,
M. Susan Lozier Earth and Ocean Sciences, Nicholas School of the Environment, Duke University, Durham, North Carolina

Search for other papers by M. Susan Lozier in
Current site
Google Scholar
PubMed
Close
, and
William E. Johns Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, Florida

Search for other papers by William E. Johns in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

A transbasin monitoring array from Labrador to Scotland was deployed in the summer of 2014 as part of the Overturning in the Subpolar North Atlantic Program (OSNAP). The aim of the observing system is to provide a multiyear continuous measure of the Atlantic meridional overturning circulation (AMOC) and the associated meridional heat and freshwater transports in the subpolar North Atlantic. Results from the array are expected to improve the understanding of the variability of the subpolar transports and the nature and degree of the AMOC’s latitudinal dependence. In this present work, the measurements of the OSNAP array are described and a suite of observing system simulation experiments in an eddy-permitting numerical model are used to assess how well these measurements will estimate the fluxes across the OSNAP section. The simulation experiments indicate that the OSNAP array and calculation methods will adequately capture the mean and temporal variability of the overturning circulation and of the heat and freshwater transports across the subpolar North Atlantic.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Feili Li, feili.li@duke.edu

Abstract

A transbasin monitoring array from Labrador to Scotland was deployed in the summer of 2014 as part of the Overturning in the Subpolar North Atlantic Program (OSNAP). The aim of the observing system is to provide a multiyear continuous measure of the Atlantic meridional overturning circulation (AMOC) and the associated meridional heat and freshwater transports in the subpolar North Atlantic. Results from the array are expected to improve the understanding of the variability of the subpolar transports and the nature and degree of the AMOC’s latitudinal dependence. In this present work, the measurements of the OSNAP array are described and a suite of observing system simulation experiments in an eddy-permitting numerical model are used to assess how well these measurements will estimate the fluxes across the OSNAP section. The simulation experiments indicate that the OSNAP array and calculation methods will adequately capture the mean and temporal variability of the overturning circulation and of the heat and freshwater transports across the subpolar North Atlantic.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Feili Li, feili.li@duke.edu
Save
  • Baehr, J., J. Hirschi, J.-O. Beismann, and J. Marotzke, 2004: Monitoring the meridional overturning circulation in the North Atlantic: A model-based array design study. J. Mar. Res., 62, 283312, doi:10.1357/0022240041446191.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barnier, B., and Coauthors, 2006: Impact of partial steps and momentum advection schemes in a global ocean circulation model at eddy-permitting resolution. Ocean Dyn., 56, 543567, doi:10.1007/s10236-006-0082-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Biastoch, A., C. W. Böning, J. Getzlaff, J. M. Molines, and G. Madec, 2008: Causes of interannual–decadal variability in the meridional overturning circulation of the midlatitude North Atlantic Ocean. J. Climate, 21, 65996615, doi:10.1175/2008JCLI2404.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bingham, R. J., C. W. Hughes, V. Roussenov, and R. G. Williams, 2007: Meridional coherence of the North Atlantic meridional overturning circulation. Geophys. Res. Lett., 34, L23606, doi:10.1029/2007GL031731.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Böhm, E., and Coauthors, 2015: Strong and deep Atlantic meridional overturning circulation during the last glacial cycle. Nature, 517, 7376, doi:10.1038/nature14059.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Böhme, L., and U. Send, 2005: Objective analyses of hydrographic data for referencing profiling float salinities in highly variable environments. Deep-Sea Res. II, 52, 651664, doi:10.1016/j.dsr2.2004.12.014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bretherton, F., R. Davis, and C. Fandry, 1976: A technique for objective analysis and design of oceanographic experiments applied to MODE-73. Deep-Sea Res. Oceanogr. Abstr., 23, 559582, doi:10.1016/0011-7471(76)90001-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Clark, P. U., N. G. Pisias, T. F. Stocker, and A. J. Weaver, 2002: The role of the thermohaline circulation in abrupt climate change. Nature, 415, 863869, doi:10.1038/415863a.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cunningham, S. A., and Coauthors, 2007: Temporal variability of the Atlantic meridional overturning circulation at 26.5°N. Science, 317, 935938, doi:10.1126/science.1141304.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Curry, B., C. M. Lee, and B. Petrie, 2011: Volume, freshwater, and heat fluxes through Davis Strait, 2004–05. J. Phys. Oceanogr., 41, 429436, doi:10.1175/2010JPO4536.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • DRAKKAR Group, 2007: Eddy-permitting ocean circulation hindcasts of past decades. CLIVAR Exchanges, No. 42, International CLIVAR Project Office, Southampton, United Kingdom, 8–10.

  • Frajka-Williams, E., 2015: Estimating the Atlantic overturning at 26°N using satellite altimetry and cable measurements. Geophys. Res. Lett., 42, 34583464, doi:10.1002/2015GL063220.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ganopolski, A., and S. Rahmstorf, 2001: Rapid changes of glacial climate simulated in a coupled climate model. Nature, 409, 153158, doi:10.1038/35051500.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hadfield, R. E., N. C. Wells, S. A. Josey, and J. J.-M. Hirschi, 2007: On the accuracy of North Atlantic temperature and heat storage fields from Argo. J. Geophys. Res., 112, C01009, doi:10.1029/2006JC003825.

    • Search Google Scholar
    • Export Citation
  • Hall, M. M., and H. L. Bryden, 1982: Direct estimates and mechanisms of ocean heat transport. Deep-Sea Res., 29A, 339359, doi:10.1016/0198-0149(82)90099-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hirschi, J., and J. Marotzke, 2007: Reconstructing the meridional overturning circulation from boundary densities and the zonal wind stress. J. Phys. Oceanogr., 37, 743763, doi:10.1175/JPO3019.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • IPCC, 2013: Climate Change 2013: The Physical Science Basis. Cambridge University Press, 1535 pp., doi:10.1017/CBO9781107415324.

    • Crossref
    • Export Citation
  • Johns, W. E., and Coauthors, 2011: Continuous, array-based estimates of Atlantic Ocean heat transport at 26.5°N. J. Climate, 24, 24292449, doi:10.1175/2010JCLI3997.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kanzow, T., and Coauthors, 2007: Observed flow compensation associated with the MOC at 26.5°N in the Atlantic. Science, 317, 938941, doi:10.1126/science.1141293.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lee, T., and J. Marotzke, 1998: Seasonal cycles of meridional overturning and heat transport of the Indian Ocean. J. Phys. Oceanogr., 28, 923943, doi:10.1175/1520-0485(1998)028<0923:SCOMOA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, F., Y.-H. Jo, W. T. Liu, and X.-H. Yan, 2012: A dipole pattern of the sea surface height anomaly in the North Atlantic: 1990s–2000s. Geophys. Res. Lett., 39, L15604, doi:10.1029/2012GL052556.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, F., Y.-H. Jo, X.-H. Yan, and W. Liu, 2016: Climate signals in the mid- to high-latitude North Atlantic from altimeter observations. J. Climate, 29, 49054925, doi:10.1175/JCLI-D-12-00670.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Locarnini, R. A., and Coauthors, 2013: Temperature. Vol. 1, World Ocean Atlas 2013, NOAA Atlas NESDIS 73, 40 pp.

  • Lorbacher, K., J. Dengg, C. W. Böning, and A. Biastoch, 2010: Regional patterns of sea level change related to interannual variability and multidecadal trends in the Atlantic meridional overturning circulation. J. Climate, 23, 42434254, doi:10.1175/2010JCLI3341.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lozier, M. S., 2012: Overturning in the North Atlantic. Annu. Rev. Mar. Sci., 4, 291315, doi:10.1146/annurev-marine-120710-100740.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lozier, M. S., V. Roussenov, M. S. C. Reed, and R. G. Williams, 2010: Opposing decadal changes for the North Atlantic meridional overturning circulation. Nature, 3, 728734, doi:10.1038/ngeo947.

    • Search Google Scholar
    • Export Citation
  • Lozier, M. S., and Coauthors, 2017: Overturning in the Subpolar North Atlantic Program: A new international ocean observing system. Bull. Amer. Meteor. Soc., 98, 737752, doi:10.1175/BAMS-D-16-0057.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lynch-Stieglitz, J., and Coauthors, 2007: Atlantic meridional overturning circulation during the Last Glacial Maximum. Science, 316, 6669, doi:10.1126/science.1137127.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lynch-Stieglitz, J., M. W. Schmidt, and W. B. Curry, 2011: Evidence from the Florida Straits for Younger Dryas ocean circulation changes. Paleoceanography, 26, PA1205, doi:10.1029/2010PA002032.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McCarthy, G. D., and Coauthors, 2012: Observed interannual variability of the Atlantic meridional overturning circulation at 26.5°N. Geophys. Res. Lett., 39, L19609, doi:10.1029/2012GL052933.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McCarthy, G. D., I. D. Haigh, J. J.-M. Hirschi, J. P. Grist, and D. A. Smeed, 2015: Ocean impact on decadal Atlantic climate variability revealed by sea-level observations. Nature, 521, 508510, doi:10.1038/nature14491.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McDonagh, E. L., and Coauthors, 2015: Continuous estimate of Atlantic oceanic freshwater flux at 26.5°N. J. Climate, 28, 88888906, doi:10.1175/JCLI-D-14-00519.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McManus, J. F., R. Francois, J. Gherardi, L. D. Keigwin, and S. Brown-Leger, 2004: Collapse and rapid resumption of Atlantic meridional circulation linked to deglacial climate changes. Nature, 428, 834837, doi:10.1038/nature02494.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mercier, H., and Coauthors, 2015: Variability of the meridional overturning circulation at the Greenland–Portugal OVIDE section from 1993 to 2010. Prog. Oceanogr., 132, 250261, doi:10.1016/j.pocean.2013.11.001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pillar, H., P. Heimbach, H. Johnson, and D. Marshall, 2016: Dynamical attribution of recent variability in Atlantic overturning. J. Climate, 29, 33393352, doi:10.1175/JCLI-D-15-0727.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rahmstorf, S., 2002: Ocean circulation and climate during the past 120,000 years. Nature, 419, 207214, doi:10.1038/nature01090.

  • Robson, J., R. Sutton, K. Lohmann, D. Smith, and M. D. Palmer, 2012: Causes of the rapid warming of the North Atlantic Ocean in the mid-1990s. J. Climate, 25, 41164134, doi:10.1175/JCLI-D-11-00443.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smeed, D. A., and Coauthors, 2014: Observed decline of the Atlantic meridional overturning circulation 2004–2012. Ocean Sci., 10, 2938, doi:10.5194/os-10-29-2014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stepanov, V. N., and K. Haines, 2014: Mechanisms of Atlantic meridional overturning circulation variability simulated by the NEMO model. Ocean Sci., 10, 645656, doi:10.5194/os-10-645-2014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Willis, J. K., 2010: Can in situ floats and satellite altimeters detect long-term changes in Atlantic Ocean overturning? Geophys. Res. Lett., 37, L06602, doi:10.1029/2010GL042372.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Woodgate, R. A., K. Aagaard, and T. J. Weingartner, 2005: Monthly temperature, salinity, and transport variability of the Bering Strait through flow. Geophys. Res. Lett., 32, L04601, doi:10.1029/2004GL021880.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, R., 2010: Latitudinal dependence of Atlantic meridional overturning circulation (AMOC) variations. Geophys. Res. Lett., 37, L16703, doi:10.1029/2010GL044474.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zweng, M. M., and Coauthors, 2013: Salinity. Vol. 2, World Ocean Atlas 2013, NOAA Atlas NESDIS 74, 39 pp.

    • Crossref
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 2205 346 20
PDF Downloads 1269 228 9