A Coupled Circulation–Wave Model for Numerical Simulation of Storm Tides and Waves

Reza Marsooli Davidson Laboratory, Stevens Institute of Technology, Hoboken, New Jersey

Search for other papers by Reza Marsooli in
Current site
Google Scholar
PubMed
Close
,
Philip M. Orton Davidson Laboratory, Stevens Institute of Technology, Hoboken, New Jersey

Search for other papers by Philip M. Orton in
Current site
Google Scholar
PubMed
Close
,
George Mellor Program in Atmospheric and Oceanic Sciences, Princeton University, Princeton, New Jersey

Search for other papers by George Mellor in
Current site
Google Scholar
PubMed
Close
,
Nickitas Georgas Davidson Laboratory, Stevens Institute of Technology, Hoboken, New Jersey

Search for other papers by Nickitas Georgas in
Current site
Google Scholar
PubMed
Close
, and
Alan F. Blumberg Davidson Laboratory, Stevens Institute of Technology, Hoboken, New Jersey

Search for other papers by Alan F. Blumberg in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The Stevens Institute of Technology Estuarine and Coastal Ocean Model (sECOM) is coupled here with the Mellor–Donelan–Oey (MDO) wave model to simulate coastal flooding due to storm tides and waves. sECOM is the three-dimensional (3D) circulation model used in the New York Harbor Observing and Prediction System (NYHOPS). The MDO wave model is a computationally cost-effective spectral wave model suitable for coupling with 3D circulation models. The coupled sECOM–MDO model takes into account wave–current interactions through wave-enhanced water surface roughness and wind stress, wave–current bottom stress, and depth-dependent wave radiation stress. The model results are compared with existing laboratory measurements and the field data collected in New York–New Jersey (NY–NJ) harbor during Hurricane Sandy. Comparisons between the model results and laboratory measurements demonstrate the capabilities of the model to accurately simulate wave characteristics, wave-induced water elevation, and undertow current. The model results for Hurricane Sandy reveal the successful performance of sECOM–MDO in situations where high waves and storm tides coexist. The results indicate that the temporal maximum wave setup in NY–NJ harbor was 0.26 m. On the other hand, the contribution of wave setup to the peak storm tide was 0.13 m, a contribution of only 3.8%. It is found that the inclusion of wave radiation stress and wave-enhanced bottom friction in the circulation model can reduce the errors in the calculated storm tides. At the Battery (New York), for example, the root-mean-square error reduced from 0.17 to 0.12 m.

Current affiliation: Department of Civil and Environmental Engineering, Princeton University, Princeton, New Jersey.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Publisher’s Note: This article was revised on 17 July 2017 to update the Acknowledgments section.

Corresponding author: Reza Marsooli, rezamarsooli@gmail.com

Abstract

The Stevens Institute of Technology Estuarine and Coastal Ocean Model (sECOM) is coupled here with the Mellor–Donelan–Oey (MDO) wave model to simulate coastal flooding due to storm tides and waves. sECOM is the three-dimensional (3D) circulation model used in the New York Harbor Observing and Prediction System (NYHOPS). The MDO wave model is a computationally cost-effective spectral wave model suitable for coupling with 3D circulation models. The coupled sECOM–MDO model takes into account wave–current interactions through wave-enhanced water surface roughness and wind stress, wave–current bottom stress, and depth-dependent wave radiation stress. The model results are compared with existing laboratory measurements and the field data collected in New York–New Jersey (NY–NJ) harbor during Hurricane Sandy. Comparisons between the model results and laboratory measurements demonstrate the capabilities of the model to accurately simulate wave characteristics, wave-induced water elevation, and undertow current. The model results for Hurricane Sandy reveal the successful performance of sECOM–MDO in situations where high waves and storm tides coexist. The results indicate that the temporal maximum wave setup in NY–NJ harbor was 0.26 m. On the other hand, the contribution of wave setup to the peak storm tide was 0.13 m, a contribution of only 3.8%. It is found that the inclusion of wave radiation stress and wave-enhanced bottom friction in the circulation model can reduce the errors in the calculated storm tides. At the Battery (New York), for example, the root-mean-square error reduced from 0.17 to 0.12 m.

Current affiliation: Department of Civil and Environmental Engineering, Princeton University, Princeton, New Jersey.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Publisher’s Note: This article was revised on 17 July 2017 to update the Acknowledgments section.

Corresponding author: Reza Marsooli, rezamarsooli@gmail.com
Save
  • Ahsan, A. K. M. Q., and A. F. Blumberg, 1999: Three-dimensional hydrothermal model of Onondaga Lake, New York. J. Hydraul. Eng., 125, 912923, doi:10.1061/(ASCE)0733-9429(1999)125:9(912).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Allard, R., and Coauthors, 2014: The US Navy coupled ocean-wave prediction system. Oceanography, 27 (3), 92103, doi:10.5670/oceanog.2014.71.

  • Battjes, J. A., 1972: Radiation stresses in short-crested waves. J. Mar. Res., 30, 5664.

  • Battjes, J. A., and J. P. F. M. Janssen, 1978: Energy loss and set-up due to breaking of random waves. Coastal Engineering 1978: Proceedings of the Sixteenth Coastal Engineering Conference, Vol. 16, ASCE, 569587, doi:10.1061/9780872621909.034.

    • Crossref
    • Export Citation
  • Bhushan, S., A. Blumberg, and N. Georgas, 2010: Comparison of NYHOPS hydrodynamic model SST predictions with satellite observations in the Hudson River tidal, estuarine, and coastal plume region. Estuarine and Coastal Modeling (2009): 11th International Conference on Estuarine and Coastal Modeling, M. L. Spaulding, Ed., ASCE, 1126, doi:10.1061/9780784411216.

    • Crossref
    • Export Citation
  • Blake, E. S., T. B. Kimberlain, R. J. Berg, J. P. Cangialosi, and J. L. Beven II, 2013: Tropical cyclone report: Hurricane Sandy. National Hurricane Center Rep. AL182012, 157 pp.

  • Blumberg, A. F., and G. L. Mellor, 1980: A coastal ocean numerical model. Mathematical Modelling of Estuarine Physics, J. Sundermann and K. P. Holz, Eds., Springer, 203–219.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Blumberg, A. F., and G. L. Mellor, 1987: A description of a three-dimensional coastal ocean circulation model. Three-Dimensional Coastal Ocean Models, N. Heaps, Ed., Coastal and Estuarine Sciences, Vol. 4, Amer. Geophys. Union, 1–16.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Blumberg, A. F., and N. Georgas, 2008: Quantifying uncertainty in estuarine and coastal ocean circulation modeling. J. Hydraul. Eng., 134, 403415, doi:10.1061/(ASCE)0733-9429(2008)134:4(403).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Blumberg, A. F., L. A. Khan, and J. P. St. John, 1999: Three-dimensional hydrodynamic model of New York Harbor region. J. Hydraul. Eng., 125, 799816, doi:10.1061/(ASCE)0733-9429(1999)125:8(799).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Blumberg, A. F., N. Georgas, L. Yin, T. O. Herrington, and P. M. Orton, 2015: Street-scale modeling of storm surge inundation along the New Jersey Hudson River Waterfront. J. Atmos. Oceanic Technol., 32, 14861497, doi:10.1175/JTECH-D-14-00213.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Booij, N., R. C. Ris, and L. H. Holthuijsen, 1999: A third-generation wave model for coastal regions: 1. Model description and validation. J. Geophys. Res., 104, 76497666, doi:10.1029/98JC02622.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bores, M., 1996: Simulation of a surf zone with a barred beach; Part 1: Wave heights and wave breaking. Delft University of Technology Rep. 96-5, 116 pp.

  • Chen, C., R. C. Beardsley, and G. Cowles, 2006: An unstructured grid, finite-volume coastal ocean model (FVCOM) system. Oceanography, 19 (1), 7889, doi:10.5670/oceanog.2006.92.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Davies, A. M., and J. Lawrence, 1994: Examining the influence of wind and wind wave turbulence on tidal currents, using a three-dimensional hydrodynamic model including wave–current interaction. J. Phys. Oceanogr., 24, 24412460, doi:10.1175/1520-0485(1994)024<2441:ETIOWA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dietrich, J. C., and Coauthors, 2011: Modeling hurricane waves and storm surge using integrally-coupled, scalable computations. Coastal Eng., 58, 4565, doi:10.1016/j.coastaleng.2010.08.001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Donelan, M. A., 1977: A simple numerical model for wave and wind stress prediction. National Water Research Institute Rep., 28 pp.

  • Donelan, M. A., 1990: Air–sea interaction. Ocean Engineering Science, Parts A and B, B. LeMehaute and D. M. Hanes, Eds., The Sea: Ideas and Observations on Progress in the Study of the Seas, Vol. 9B, John Wiley and Sons, 239–292.

    • Search Google Scholar
    • Export Citation
  • Donelan, M. A., J. Hamilton, and W. H. Hui, 1985: Directional spectra of wind-generated waves. Philos. Trans. Roy. Soc. London, 315A, 509562, doi:10.1098/rsta.1985.0054.

    • Search Google Scholar
    • Export Citation
  • Donelan, M. A., M. Curcic, S. S. Chen, and A. K. Magnusson, 2012: Modeling waves and wind stress. J. Geophys. Res., 117, C00J23, doi:10.1029/2011JC007787.

    • Search Google Scholar
    • Export Citation
  • Flowerdew, J., K. Horsburgh, C. Wilson, and K. Mylne, 2010: Development and evaluation of an ensemble forecasting system for coastal storm surges. Quart. J. Roy. Meteor. Soc., 136, 14441456, doi:10.1002/qj.648.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Forbes, C., J. Rhome, C. Mattocks, and A. Taylor, 2014: Predicting the storm surge threat of Hurricane Sandy with the National Weather Service SLOSH model. J. Marine Sci. Eng., 2, 437476, doi:10.3390/jmse2020437.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Galperin, B., and G. L. Mellor, 1990: A time-dependent, three-dimensional model of the Delaware Bay and River system. Coastal Shelf Sci., 31, 231281, doi:10.1016/0272-7714(90)90103-X.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Georgas, N., 2012: Large seasonal modulation of tides due to ice cover friction in a midlatitude estuary. J. Phys. Oceanogr., 42, 352369, doi:10.1175/JPO-D-11-063.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Georgas, N., and A. Blumberg, 2010: Establishing confidence in marine forecast systems: The design and skill assessment of the New York Harbor Observation and Prediction System, version 3 (NYHOPS v3). Estuarine and Coastal Modeling (2009): Proceedings of the Eleventh International Conference on Estuarine and Coastal Modeling, M. L. Spaulding, Ed., ASCE, 660–685, doi:10.1061/41121(388)39.

    • Crossref
    • Export Citation
  • Georgas, N., A. F. Blumberg, and T. O. Herrington, 2007: An operational coastal wave forecasting model for New Jersey and Long Island waters. Shore Beach, 75, 3035.

    • Search Google Scholar
    • Export Citation
  • Georgas, N., and Coauthors, 2016: The Stevens Flood Advisory System: Operational H3e flood forecasts for the greater New York / New Jersey metropolitan region. Int. J. Saf. Secur. Eng., 6, 648662, doi:10.2495/SAFE-V6-N3-648-662.

    • Search Google Scholar
    • Export Citation
  • Gibbs, A., P. Santos, A. van der Westhuysen, and R. Padilla-Hernandez, 2012: NWS southern region numerical optimization and sensitivity evaluation in non-stationary SWAN simulations. Second Conf. on Transition of Research to Operations: Successes, Plans, and Challenges, New Orleans, LA, Amer. Meteor. Soc., TJ25.1. [Available online at https://ams.confex.com/ams/92Annual/webprogram/Paper200322.html.]

  • Golding, B. W., 1978: A depth-dependent wave model for operational forecasting. Turbulent Fluxes through the Sea Surface, Wave Dynamics and Prediction, A. Favre and K. Hasselmann, Eds., NATO Conference Series, Vol. 5, Plenum Press, 593–606, doi:10.1007/978-1-4612-9806-9_38.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grant, W. D., and O. S. Madsen, 1979: Combined wave and current interaction with a rough bottom. J. Geophys. Res., 84, 17971808, doi:10.1029/JC084iC04p01797.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hasselmann, K., and Coauthors, 1973: Measurements of wind-wave growth and swell decay during the Joint North Sea Wave Project (JONSWAP). Dtsch. Hydrogr. Z. (Suppl.), A8 (12), 95 pp.

  • Janssen, P. A. E. M., 1991: Quasi-linear theory of wind-wave generation applied to wave forecasting. J. Phys. Oceanogr., 21, 16311642, doi:10.1175/1520-0485(1991)021<1631:QLTOWW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jordi, A., N. Georgas, and A. F. Blumberg, 2017: A parallel domain decomposition algorithm for coastal ocean circulation models based on integer linear programing. Ocean Dyn., 67, 639649, doi:10.1007/s10236-017-1049-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Komen, G. J., L. Cavaleri, M. Donelan, K. Hasselmann, S. Hasselmann, and P. A. E. M. Janssen, 1994: Dynamics and Modelling of Ocean Waves. Cambridge University Press, 532 pp.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, H., and L. Xie, 2009: A numerical study on the effects of wave–current–surge interactions on the height and propagation of sea surface waves in Charleston Harbor during Hurricane Hugo 1989. Cont. Shelf Res., 29, 14541463, doi:10.1016/j.csr.2009.03.013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Longuet-Higgins, M. S., and R. W. Stewart, 1962: Radiation stress and mass transport in gravity waves, with application to ‘surf beats.’ J. Fluid Mech., 13, 481504, doi:10.1017/S0022112062000877.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Longuet-Higgins, M. S., and R. W. Stewart, 1964: Radiation stresses in water waves; a physical discussion, with applications. Deep-Sea Res. Oceanogr. Abstr., 11, 529562, doi:10.1016/0011-7471(64)90001-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Luettich, R. A., Jr., J. J. Westerink, and N. W. Scheffner, 1992: ADCIRC: An advanced three-dimensional circulation model for shelves coasts and estuaries. Report 1: Theory and methodology of ADCIRC-2DDI and ADCIRC-3DL, U.S. Army Engineer Waterways Experiment Station Dredging Research Program Tech. Rep. DRP-92-6, 137 pp.

  • Madala, R. V., and S. A. Piacsek, 1977: A semi-implicit numerical model for baroclinic oceans. J. Comput. Phys., 23, 167178, doi:10.1016/0021-9991(77)90119-X.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marsooli, R., and W. Wu, 2014a: Numerical investigation of wave attenuation by vegetation using a 3D RANS model. Adv. Water Resour., 74, 245257, doi:10.1016/j.advwatres.2014.09.012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marsooli, R., and W. Wu, 2014b: 3-D finite-volume model of dam-break flow over uneven beds based on VOF method. Adv. Water Resour., 70, 104117, doi:10.1016/j.advwatres.2014.04.020.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marsooli, R., P. M. Orton, N. Georgas, and A. F. Blumberg, 2016: Three-dimensional hydrodynamic modeling of storm tide mitigation by coastal wetlands. Coastal Eng., 111, 8394, doi:10.1016/j.coastaleng.2016.01.012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Massey, T. C., M. E. Anderson, J. M. Smith, J. Gomez, and R. Jones, 2011: STWAVE: Steady-State Spectral Wave Model; user’s manual for STWAVE, version 6.0. U.S. Army Corps of Engineers Final Rep. ERDC/CHL TR-11-1, 89 pp.

  • Mathisen, P. P., and O. S. Madsen, 1996: Waves and currents over a fixed rippled bed: 2. Bottom and apparent roughness experienced by currents in the presence of waves. J. Geophys. Res., 101, 16 54316 550, doi:10.1029/96JC00955.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mellor, G. L., 2003: The three-dimensional current and surface wave equations. J. Phys. Oceanogr., 33, 19781989, doi:10.1175/1520-0485(2003)033<1978:TTCASW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mellor, G. L., 2008: The depth-dependent current and wave interaction equations: A revision. J. Phys. Oceanogr., 38, 25872596, doi:10.1175/2008JPO3971.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mellor, G. L., 2015: A combined derivation of the integrated and vertically resolved, coupled wave–current equations. J. Phys. Oceanogr., 45, 14531463, doi:10.1175/JPO-D-14-0112.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mellor, G. L., 2016: On theories dealing with the interaction of surface waves and ocean circulation. J. Geophys. Res. Oceans, 121, 44744486, doi:10.1002/2016JC011768.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mellor, G. L., and T. Yamada, 1982: Development of a turbulence closure model for geophysical fluid problems. Rev. Geophys., 20, 851875, doi:10.1029/RG020i004p00851.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mellor, G. L., M. A. Donelan, and L.-Y. Oey, 2008: A surface wave model for coupling with numerical ocean circulation models. J. Atmos. Oceanic Technol., 25, 17851807, doi:10.1175/2008JTECHO573.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moon, I.-J., 2005: Impact of a coupled ocean wave–tide–circulation system on coastal modeling. Ocean Modell., 8, 203236, doi:10.1016/j.ocemod.2004.02.001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • National Ocean Service, 2016: What is storm surge? NOAA. [Available online at http://oceanservice.noaa.gov/facts/stormsurge-stormtide.html.]

  • Oey, L.-Y., G. L. Mellor, and R. I. Hires, 1985: A three dimensional simulation of the Hudson–Raritan Estuary. J. Phys. Oceanogr., 15, 16761720, doi:10.1175/1520-0485(1985)015<1676:ATDSOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Orton, P. M., N. Georgas, A. Blumberg, and J. Pullen, 2012: Detailed modeling of recent severe storm tides in estuaries of the New York City region. J. Geophys. Res., 117, C09030, doi:10.1029/2012JC008220.

    • Search Google Scholar
    • Export Citation
  • Orton, P. M., and Coauthors, 2015: Channel shallowing as mitigation of coastal flooding. J. Mar. Sci. Eng., 3, 654673, doi:10.3390/jmse3030654.

  • Orton, P. M., T. M. Hall, S. Talke, A. F. Blumberg, N. Georgas, and S. Vinogradov, 2016: A validated tropical-extratropical flood hazard assessment for New York Harbor. J. Geophys. Res. Oceans, 121, 89048929, doi:10.1002/2016JC011679.

    • Search Google Scholar
    • Export Citation
  • Phillips, O. M., 1977: The Dynamics of the Upper Ocean. Cambridge University Press, 336 pp.

  • Powell, M. D., P. J. Vickery, and T. A. Reinhold, 2003: Reduced drag coefficient for high wind speeds in tropical cyclones. Nature, 422, 279283, doi:10.1038/nature01481.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Roelvink, J. A., and A. J. H. M. Reniers, 1995: Lip11D Delta Flume experiments. Delft Hydraulics Rep. H2130, 106 pp.

  • Roland, A., and Coauthors, 2012: A fully coupled 3D wave-current interaction model on unstructured grids. J. Geophys. Res., 117, C00J33, doi:10.1029/2012JC007952.

    • Search Google Scholar
    • Export Citation
  • Shchepetkin, A. F., and J. C. McWilliams, 2005: The regional oceanic modeling system (ROMS): A split-explicit, free-surface, topography-following-coordinate oceanic model. Ocean Modell., 9, 347404, doi:10.1016/j.ocemod.2004.08.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sheng, Y. P., and T. Liu, 2011: Three‐dimensional simulation of wave‐induced circulation: Comparison of three radiation stress formulations. J. Geophys. Res., 116, C05021, doi:10.1029/2010JC006765.

    • Search Google Scholar
    • Export Citation
  • Signell, R. P., R. C. Beardsley, H. C. Graber, and A. Capotondi, 1990: Effect of wave-current interaction on wind-driven circulation in narrow, shallow embayments. J. Geophys. Res., 95, 96719678, doi:10.1029/JC095iC06p09671.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Simons, T. J., 1974: Verification of numerical models of Lake Ontario: Part I. Circulation in spring and early summer. J. Phys. Oceanogr., 4, 507523, doi:10.1175/1520-0485(1974)004<0507:VONMOL>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smagorinsky, J., 1963: General circulation experiments with the primitive equations. I. The basic experiment. Mon. Wea. Rev., 91, 99164, doi:10.1175/1520-0493(1963)091<0099:GCEWTP>2.3.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stive, M. J. F., 1985: A scale comparison of waves breaking on a beach. Coastal Eng., 9, 151158, doi:10.1016/0378-3839(85)90003-1.

  • Taylor, A. A., and B. Glahn, 2008: Probabilistic guidance for hurricane storm surge. 19th Conf. on Probability and Statistics, New Orleans, LA, Amer. Meteor. Soc., 7.4. [Available online at https://ams.confex.com/ams/88Annual/techprogram/paper_132793.htm.]

  • Taylor, P. K., and M. A. Yelland, 2001: The dependence of sea surface roughness on the height and steepness of the waves. J. Phys. Oceanogr., 31, 572590, doi:10.1175/1520-0485(2001)031<0572:TDOSSR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Uchiyama, Y., J. C. McWilliams, and A. F. Shchepetkin, 2010: Wave–current interaction in an oceanic circulation model with a vortex-force formalism: Application to the surf zone. Ocean Modell., 34, 1635, doi:10.1016/j.ocemod.2010.04.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Warner, J. C., W. R. Geyer, and J. A. Lerczak, 2005: Numerical modeling of an estuary: A comprehensive skill assessment. J. Geophys. Res., 110, C05001, doi:10.1029/2004JC002691.

    • Search Google Scholar
    • Export Citation
  • Warner, J. C., C. R. Sherwood, R. P. Signell, C. K. Harris, and H. G. Arango, 2008: Development of a three-dimensional, regional, coupled wave, current, and sediment-transport model. Comput. Geosci., 34, 12841306, doi:10.1016/j.cageo.2008.02.012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Willmott, C. J., 1981: On the validation of models. Phys. Geogr., 2, 184194.

  • Wu, W., 2014: A 3-D phase-averaged model for shallow-water flow with waves in vegetated water. Ocean Dyn., 64, 10611071, doi:10.1007/s10236-014-0739-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xia, H., Z. Xia, and L. Zhu, 2004: Vertical variation in radiation stress and wave-induced current. Coastal Eng., 51, 309321, doi:10.1016/j.coastaleng.2004.03.003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zou, Q.-P., Y. Chen, I. Cluckie, R. Hewston, S. Pan, Z. Peng, and D. Reeve, 2013: Ensemble prediction of coastal flood risk arising from overtopping by linking meteorological, ocean, coastal and surf zone models. Quart. J. Roy. Meteor. Soc., 139, 298313, doi:10.1002/qj.2078.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1107 323 55
PDF Downloads 939 129 6