Sea Surface Scanner (S3): A Catamaran for High-Resolution Measurements of Biogeochemical Properties of the Sea Surface Microlayer

Mariana Ribas-Ribas Institute for Chemistry and Biology of the Marine Environment, Carl von Ossietzky University of Oldenburg, Wilhelmshaven, Germany

Search for other papers by Mariana Ribas-Ribas in
Current site
Google Scholar
PubMed
Close
,
Nur Ili Hamizah Mustaffa Institute for Chemistry and Biology of the Marine Environment, Carl von Ossietzky University of Oldenburg, Wilhelmshaven, Germany

Search for other papers by Nur Ili Hamizah Mustaffa in
Current site
Google Scholar
PubMed
Close
,
Janina Rahlff Institute for Chemistry and Biology of the Marine Environment, Carl von Ossietzky University of Oldenburg, Wilhelmshaven, Germany

Search for other papers by Janina Rahlff in
Current site
Google Scholar
PubMed
Close
,
Christian Stolle Institute for Chemistry and Biology of the Marine Environment, Carl von Ossietzky University of Oldenburg, Wilhelmshaven, and Leibniz Institute for Baltic Sea Research, Rostock, Germany

Search for other papers by Christian Stolle in
Current site
Google Scholar
PubMed
Close
, and
Oliver Wurl Institute for Chemistry and Biology of the Marine Environment, Carl von Ossietzky University of Oldenburg, Wilhelmshaven, Germany

Search for other papers by Oliver Wurl in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

This paper describes a state-of-the-art research catamaran to investigate processes such as air–sea gas exchange, heat exchange, surface blooms, and photochemistry at the sea surface microlayer (SML) with high-resolution measurements of 0.1-Hz frequency. As the boundary layer between the ocean and the atmosphere, the SML covers 70% of Earth. The remote-controlled Sea Surface Scanner is based on a glass disk sampler to automate the sampling of the thin SML, overcoming the disadvantages of techniques such as low volume sampling and ex situ measurement of the SML. A suite of in situ sensors for seven biogeochemical parameters (temperature, pH, dissolved oxygen, salinity, chromophoric dissolved organic matter, chlorophyll-a, and photosynthetic efficiency) was implemented to characterize the SML in reference to the mixed bulk water. The Sea Surface Scanner has the capability to collect 24 discrete water samples with a volume of 1 L each for further laboratory analysis. Meteorological parameters such as wind speed influence SML properties and are continuously monitored. This paper reports the use of the Sea Surface Scanner to identify and study (i) upwelling regions and associated fronts, (ii) rain events, and (iii) the occurrence of surface blooms. The high patchiness of the SML was detected during the observed sea surface phenomena, and high-resolution mapping of the biogeochemical parameters of the oceanic boundary layer to the atmosphere are presented for the first time. The Sea Surface Scanner is a new technology to map and understand sea surface processes and, ultimately, to fill the gaps in knowledge about ocean–atmosphere interactions relevant to ocean and climate science.

Denotes content that is immediately available upon publication as open access.

Supplemental information related to this paper is available at the Journals Online website: http://dx.doi.org/10.1175/JTECH-D-17-0017.s1.

© 2017 American Meteorological Society.

Corresponding author: Mariana Ribas-Ribas, mariana.ribas.ribas@uol.de

Abstract

This paper describes a state-of-the-art research catamaran to investigate processes such as air–sea gas exchange, heat exchange, surface blooms, and photochemistry at the sea surface microlayer (SML) with high-resolution measurements of 0.1-Hz frequency. As the boundary layer between the ocean and the atmosphere, the SML covers 70% of Earth. The remote-controlled Sea Surface Scanner is based on a glass disk sampler to automate the sampling of the thin SML, overcoming the disadvantages of techniques such as low volume sampling and ex situ measurement of the SML. A suite of in situ sensors for seven biogeochemical parameters (temperature, pH, dissolved oxygen, salinity, chromophoric dissolved organic matter, chlorophyll-a, and photosynthetic efficiency) was implemented to characterize the SML in reference to the mixed bulk water. The Sea Surface Scanner has the capability to collect 24 discrete water samples with a volume of 1 L each for further laboratory analysis. Meteorological parameters such as wind speed influence SML properties and are continuously monitored. This paper reports the use of the Sea Surface Scanner to identify and study (i) upwelling regions and associated fronts, (ii) rain events, and (iii) the occurrence of surface blooms. The high patchiness of the SML was detected during the observed sea surface phenomena, and high-resolution mapping of the biogeochemical parameters of the oceanic boundary layer to the atmosphere are presented for the first time. The Sea Surface Scanner is a new technology to map and understand sea surface processes and, ultimately, to fill the gaps in knowledge about ocean–atmosphere interactions relevant to ocean and climate science.

Denotes content that is immediately available upon publication as open access.

Supplemental information related to this paper is available at the Journals Online website: http://dx.doi.org/10.1175/JTECH-D-17-0017.s1.

© 2017 American Meteorological Society.

Corresponding author: Mariana Ribas-Ribas, mariana.ribas.ribas@uol.de
Save
  • Archer, C. L., and M. Z. Jacobson, 2005: Evaluation of global wind power. J. Geophys. Res., 110, D12110, doi:10.1029/2004JD005462.

  • Asher, W. E., A. T. Jessup, R. Branch, and D. Clark, 2014: Observations of rain-induced near-surface salinity anomalies. J. Geophys. Res. Oceans, 119, 54835500, doi:10.1002/2014JC009954.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Behrenfeld, M. J., and P. G. Falkowski, 1997: Photosynthetic rates derived from satellite-based chlorophyll concentration. Limnol. Oceanogr., 42, 120, doi:10.4319/lo.1997.42.1.0001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bianchi, T. S., E. Engelhaupt, P. Westman, T. Andrén, C. Rolff, and R. Elmgren, 2000: Cyanobacterial blooms in the Baltic Sea: Natural or human-induced? Limnol. Oceanogr., 45, 716726, doi:10.4319/lo.2000.45.3.0716.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Broecker, H. C., J. Petermann, and W. Siems, 1978: Influence of wind on CO2-exchange in a wind-wave tunnel, including effects of monolayers. J. Mar. Res., 36, 595610.

    • Search Google Scholar
    • Export Citation
  • Caccia, M., R. Bono, G. Bruzzone, E. Spirandelli, G. Veruggio, A. Stortini, and G. Capodaglio, 2005: Sampling sea surfaces with SESAMO: An autonomous craft for the study of sea-air interactions. IEEE Rob. Autom. Mag., 12, 95105, doi:10.1109/MRA.2005.1511873.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Capone, D. G., A. Subramaniam, J. P. Montoya, M. Voss, C. Humborg, A. M. Johansen, R. L. Siefert, and E. J. Carpenter, 1998: An extensive bloom of the N2-fixing cyanobacterium Trichodesmium erythraeum in the central Arabian Sea. Mar. Ecol. Prog. Ser., 172, 281292, doi:10.3354/meps172281.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Carlson, D. J., J. L. Cantey, and J. J. Cullen, 1988: Description of and results from a new surface microlayer sampling device. Deep-Sea Res., 35A, 12051213, doi:10.1016/0198-0149(88)90011-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ćosović, B., and V. Vojvodić, 1998: Voltammetric analysis of surface active substances in natural seawater. Electroanalysis, 10, 429434, doi:10.1002/(SICI)1521-4109(199805)10:6<429::AID-ELAN429>3.0.CO;2-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cunliffe, M., and O. Wurl, Eds., 2014: Guide to best practices to study the ocean’s surface. Marine Biological Association of the United Kingdom, 118 pp.

  • Cunliffe, M., R. C. Upstill-Goddard, and J. C. Murrell, 2011: Microbiology of aquatic surface microlayers. FEMS Microbiol. Rev., 35, 233246, doi:10.1111/j.1574-6976.2010.00246.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Denman, K. L., and A. E. Gargett, 1983: Time and space scales of vertical mixing and advection of phytoplankton in the upper ocean. Limnol. Oceanogr., 28, 801815, doi:10.4319/lo.1983.28.5.0801.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Eberlein, K., M. Leal, K. Hammer, and W. Hickel, 1985: Dissolved organic substances during a Phaeocystis pouchetii bloom in the German Bight (North Sea). Mar. Biol., 89, 311316, doi:10.1007/BF00393665.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Falkowska, L., and A. Latala, 1995: Short-term variations in the concentrations of suspended particles, chlorophyll a and nutrients in the surface seawater layers of the Gdansk Deep. Oceanologia, 37, 249284.

    • Search Google Scholar
    • Export Citation
  • Frew, N. M., R. K. Nelson, W. R. McGillis, J. B. Edson, E. J. Bock, and T. Hara, 2002: Spatial variations in surface microlayer surfactants and their role in modulating air-sea exchange. Gas Transfer at Water Surfaces, Geophys. Monogr., Vol. 127, Amer. Geophys. Union, 153–159, doi:10.1029/GM127p0153.

    • Crossref
    • Export Citation
  • Frew, N. M., and Coauthors, 2004: Air-sea gas transfer: Its dependence on wind stress, small-scale roughness, and surface films. J. Geophys. Res., 109, C08S17, doi:10.1029/2003JC002131.

    • Search Google Scholar
    • Export Citation
  • Garrett, W. D., 1965: Collection of slick-forming materials from the sea surface. Limnol. Oceanogr., 10, 602605, doi:10.4319/lo.1965.10.4.0602.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hajdu, S., H. Höglander, and U. Larsson, 2007: Phytoplankton vertical distributions and composition in Baltic Sea cyanobacterial blooms. Harmful Algae, 6, 189205, doi:10.1016/j.hal.2006.07.006.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hardy, J. T., 1982: The sea surface microlayer: Biology, chemistry and anthropogenic enrichment. Prog. Oceanogr., 11, 307328, doi:10.1016/0079-6611(82)90001-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Harvey, G. W., 1966: Microlayer collection from the sea surface: A new method and initial results. Limnol. Oceanogr., 11, 608613, doi:10.4319/lo.1966.11.4.0608.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Harvey, G. W., and L. A. Burzell, 1972: A simple microlayer method for small samples. Limnol. Oceanogr., 17, 156157, doi:10.4319/lo.1972.17.1.0156.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hasse, L., 2005: Transport processes in the sea-surface microlayer. The Sea Surface and Global Change, P. S. Liss and R. A. Duce, Eds., Cambridge University Press, 93–119.

    • Crossref
    • Export Citation
  • Ho, D. T., C. J. Zappa, W. R. McGillis, L. F. Bliven, B. Ward, J. W. H. Dacey, P. Schlosser, and M. B. Hendricks, 2004: Influence of rain on air-sea gas exchange: Lessons from a model ocean. J. Geophys. Res., 109, C08S18, doi:10.1029/2003JC001806.

    • Search Google Scholar
    • Export Citation
  • Hwang, P. A., and M. A. Sletten, 2008: Energy dissipation of wind-generated waves and whitecap coverage. J. Geophys. Res., 113, C02012, doi:02010.01029/02007JC004277.

    • Search Google Scholar
    • Export Citation
  • Kämpf, J., and P. Chapman, 2016: Upwelling Systems of the World: A Scientific Journey to the Most Productive Marine Ecosystems. Springer International Publishing, 433 pp., doi:10.1007/978-3-319-42524-5.

    • Crossref
    • Export Citation
  • Kieber, R. J., R. F. Whitehead, S. N. Reid, J. D. Willey, and P. J. Seaton, 2006: Chromophoric dissolved organic matter (CDOM) in rainwater, southeastern North Carolina, USA. J. Atmos. Chem., 54, 2141, doi:10.1007/s10874-005-9008-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kleemann, M., and M. Meliß, 1993: Renewable Energy Sources (in German). Springer, 316 pp., doi:10.1007/978-3-642-88075-9.

    • Crossref
    • Export Citation
  • Komori, S., N. Takagaki, R. Saiki, N. Suzuki, and K. Tanno, 2008: The effect of raindrops on interfacial turbulence and air-water gas transfer. Transport at the Air-Sea Interface: Measurements, Models and Parametrizations, C. S. Garbe, R. A. Handler, and B. Jähne, Eds., Springer, 169–179.

    • Crossref
    • Export Citation
  • Kuznetsova, M., and C. Lee, 2002: Dissolved free and combined amino acids in nearshore seawater, sea surface microlayers and foams: Influence of extracellular hydrolysis. Aquat. Sci., 64, 252268, doi:10.1007/s00027-002-8070-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lehtimaki, J., P. Moisander, K. Sivonen, and K. Kononen, 1997: Growth, nitrogen fixation, and nodularin production by two Baltic Sea cyanobacteria. Appl. Environ. Microbiol., 63, 16471656.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lim, L., O. Wurl, S. Karuppiah, and J. P. Obbard, 2007: Atmospheric wet deposition of PAHs to the sea-surface microlayer. Mar. Pollut. Bull., 54, 12121219, doi:10.1016/j.marpolbul.2007.03.023.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lorenzen, C. J., 1967: Determination of chlorophyll and pheo-pigments: Spectrophotometric equations. Limnol. Oceanogr., 12, 343346, doi:10.4319/lo.1967.12.2.0343.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Loucaides, S., and Coauthors, 2012: Biological and physical forcing of carbonate chemistry in an upwelling filament off northwest Africa: Results from a Lagrangian study. Global Biogeochem. Cycles, 26, GB3008, doi:10.1029/2011GB004216.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marie, D., N. Simon, L. Guillou, F. Partensky, and D. Vaulot, 2000: Flow cytometry analysis of marine picoplankton. In Living Color: Protocols in Flow Cytometry and Cell Sorting, R. A. Diamond and S. DeMaggio, Eds., Springer Lab Manuals, Springer, 421–454, doi:10.1007/978-3-642-57049-0_34.

    • Crossref
    • Export Citation
  • Maršálek, B., and R. Rojíčková, 1996: Stress factors enhancing production of algal exudates: A potential self-protective mechanism? Z. Naturforsch., 51C, 646650.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moore, C. M., D. J. Suggett, A. E. Hickman, Y.-N. Kim, J. F. Tweddle, J. Sharples, R. J. Geider, and P. M. Holligan, 2006: Phytoplankton photoacclimation and photoadaptation in response to environmental gradients in a shelf sea. Limnol. Oceanogr., 51, 936949, doi:10.4319/lo.2006.51.2.0936.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mustaffa, N. I. H., M. Ribas-Ribas, and O. Wurl, 2016: Multiparameter measurement of biochemical properties of the sea surface microlayer during M117 cruise. PANGAEA, doi:10.1594/PANGAEA.868976.

    • Crossref
    • Export Citation
  • Mustaffa, N. I. H., M. Ribas-Ribas, and O. Wurl, 2017: Multiparameter measurement of biochemical properties of the sea surface microlayer with RV Senckenberg in the North sea, Germany (June 2016). PANGAEA, doi:10.1594/PANGAEA.870879.

    • Crossref
    • Export Citation
  • Pelegrí, J. L., and Coauthors, 2005: Coupling between the open ocean and the coastal upwelling region off northwest Africa: Water recirculation and offshore pumping of organic matter. J. Mar. Syst., 54, 337, doi:10.1016/j.jmarsys.2004.07.003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ploug, H., 2008: Cyanobacterial surface blooms formed by Aphanizomenon sp. and Nodularia spumigena in the Baltic Sea: Small-scale fluxes, pH, and oxygen microenvironments. Limnol. Oceanogr., 53, 914921, doi:10.4319/lo.2008.53.3.0914.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rahlff, J., C. Stolle, H.-A. Giebel, T. Brinkhoff, M. Ribas-Ribas, D. Hodapp, and O. Wurl, 2017: High wind speeds prevent formation of a distinct bacterioneuston community in the sea-surface microlayer. FEMS Microbiol. Ecol., 93, fix041, doi:10.1093/femsec/fix041.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • R Development Core Team, 2008: R: A language and environment for statistical computing. R Foundation for Statistical Computing. [Available online at http://www.R-project.org.]

  • Riebesell, U., 1993: Aggregation of Phaeocystis during phytoplankton spring blooms in the southern North Sea. Mar. Ecol. Prog. Ser., 96, 281–281, doi:10.3354/meps096281.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Salter, M., and Coauthors, 2011: Impact of an artificial surfactant release on air-sea gas fluxes during Deep Ocean Gas Exchange Experiment II. J. Geophys. Res., 116, C11016, doi:10.1029/2011JC007023.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schlichting, H. E., Jr., 1971: A preliminary study of the algae and protozoa in seafoam. Bot. Mar., 14, 2428, doi:10.1515/botm.1971.14.1.24.

    • Search Google Scholar
    • Export Citation
  • Schlitzer, R., 2017: Version 4.7.10. Ocean Data View. [Available online at https://odv.awi.de/.]

  • Shinki, M., M. Wendeberg, S. Vagle, J. T. Cullen, and D. K. Hore, 2012: Characterization of adsorbed microlayer thickness on an oceanic glass plate sampler. Limnol. Oceanogr. Methods, 10, 728735, doi:10.4319/lom.2012.10.728.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sieburth, J. M., and J. T. Conover, 1965: Slicks associated with Trichodesmium Blooms in the Sargasso Sea. Nature, 205, 830831, doi:10.1038/205830b0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Soloviev, A., and R. Lukas, 2014: The Near-Surface Layer of the Ocean: Structure, Dynamics and Applications. 2nd ed. Atmospheric and Oceanographic Sciences Library, Vol. 48, Springer, 552 pp., doi:10.1007/978-94-007-7621-0.

    • Crossref
    • Export Citation
  • Wilson, T. W., and Coauthors, 2015: A marine biogenic source of atmospheric ice-nucleating particles. Nature, 525, 234238, doi:10.1038/nature14986.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wurl, O., and J. P. Obbard, 2004: A review of pollutants in the sea-surface microlayer (SML): A unique habitat for marine organisms. Mar. Pollut. Bull., 48, 10161030, doi:10.1016/j.marpolbul.2004.03.016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wurl, O., and J. P. Obbard, 2005: Chlorinated pesticides and PCBs in the sea-surface microlayer and seawater samples of Singapore. Mar. Pollut. Bull., 50, 12331243, doi:10.1016/j.marpolbul.2005.04.022.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wurl, O., L. Miller, R. Röttgers, and S. Vagle, 2009: The distribution and fate of surface-active substances in the sea-surface microlayer and water column. Mar. Chem., 115, 19, doi:10.1016/j.marchem.2009.04.007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wurl, O., E. Wurl, L. Miller, K. Johnson, and S. Vagle, 2011: Formation and global distribution of sea-surface microlayers. Biogeosciences, 8, 121135, doi:10.5194/bg-8-121-2011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wurl, O., C. Stolle, C. Van Thuoc, P. The Thu, and X. Mari, 2016: Biofilm-like properties of the sea surface and predicted effects on air–sea CO2 exchange. Prog. Oceanogr., 144, 1524, doi:10.1016/j.pocean.2016.03.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zappa, C. J., W. R. McGillis, P. A. Raymond, J. B. Edson, E. J. Hintsa, H. J. Zemmelink, J. W. Dacey, and D. T. Ho, 2007: Environmental turbulent mixing controls on air-water gas exchange in marine and aquatic systems. Geophys. Res. Lett., 34, L10601, doi:10.1029/2006GL028790.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, Z., W. Cai, L. Liu, C. Liu, and F. Chen, 2003: Direct determination of thickness of sea surface microlayer using a pH microelectrode at original location. Sci. China, 46B, 339351, doi:10.1360/02yb0192.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhou, J., M. Kenneth, and U. Passow, 1998: The role of surface-active carbohydrates in the formation of transparent exopolymer particles by bubble adsorption of seawater. Limnol. Oceanogr., 43, 18601871, doi:10.4319/lo.1998.43.8.1860.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ẑutić, V., B. Ćosović, E. Marčenko, N. Bihari, and F. Kršinić, 1981: Surfactant production by marine phytoplankton. Mar. Chem., 10, 505520, doi:10.1016/0304-4203(81)90004-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1446 365 28
PDF Downloads 1009 215 12