• Alexandersson, H., 1986: A homogeneity test applied to precipitation data. Int. J. Climatol., 6, 661675, https://doi.org/10.1002/joc.3370060607.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • AXYS Environmental Consulting Ltd., 1996: Meteorological and oceanographic measurements from Canadian weather buoys. AXYS Tech. Rep., 80 pp.

  • Barnes, S., 1964: A technique for maximizing details in numerical weather map analysis. J. Appl. Meteor., 3, 396409, https://doi.org/10.1175/1520-0450(1964)003<0396:ATFMDI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Begert, M., G. Seiz, T. Schlegel, M. Musa, G. Baudraz, and M. Moesch, 2003: Homogenisierung von Klimamessreihen der Schweiz und Bestimmung der Normwerte 1961-1990. MeteoSchweiz Tech. Rep. 67, 170 pp.

  • Cheng, C. S., 2014: Evidence from the historical record to support projection of future wind regimes: An application to Canada. Atmos.–Ocean, 52, 232241, https://doi.org/10.1080/07055900.2014.902803.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cheng, C. S., G. Li, Q. Li, and H. Auld, 2008: Statistical downscaling of hourly and daily climate scenarios for various meteorological variables in South-central Canada. Theor. Appl. Climatol., 91, 129147, https://doi.org/10.1007/s00704-007-0302-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cheng, C. S., G. Li, Q. Li, H. Auld, and C. Fu, 2012: Possible impacts of climate change on wind gusts under downscaled future climate conditions over Ontario, Canada. J. Climate, 25, 33903408, https://doi.org/10.1175/JCLI-D-11-00198.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • DeGaetano, A., 1997: A quality-control routine for hourly wind observations. J. Atmos. Oceanic Technol., 14, 308317, https://doi.org/10.1175/1520-0426(1997)014<0308:AQCRFH>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dunn, R. J. H., K. M. Willett, D. E. Parker, and L. Mitchell, 2016: Expanding HadISD: Quality-controlled, sub-daily station data from 1931. Geosci. Instrum. Methods Data Syst., 5, 473491, https://doi.org/10.5194/gi-5-473-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Durre, I., M. J. Menne, B. E. Gleason, T. G. Houston, and R. S. Vose, 2010: Comprehensive automated quality assurance of daily surface observations. J. Appl. Meteor. Climatol., 49, 16151633, https://doi.org/10.1175/2010JAMC2375.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Eischeid, J. K., C. B. Baker, T. R. Karl, and H. F. Diaz, 1995: The quality control of long-term climatological data using objective data analysis. J. Appl. Meteor., 34, 27872795, https://doi.org/10.1175/1520-0450(1995)034<2787:TQCOLT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Eischeid, J. K., P. Pasteris, H. Diaz, M. Plantico, and N. Lott, 2000: Creating a serially complete, national daily time series of temperature and precipitation for the western United States. J. Appl. Meteor., 39, 15801591, https://doi.org/10.1175/1520-0450(2000)039<1580:CASCND>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Environment and Climate Change Canada, 2017: Technical documentation: Digital archive of Canadian climatological data. ECCC, 35 pp., ftp://ftp.tor.ec.gc.ca/Pub/Documentation_Technical/Technical_Documentation.pdf.

  • Etkin, D., S. E. Brun, A. Shabbar, and P. Joe, 2001: Tornado climatology of Canada revisited: Tornado activity during different phases of ENSO. Int. J. Climatol., 21, 915938, https://doi.org/10.1002/joc.654.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fiebrich, C. A., C. R. Morgan, A. G. McCombs, P. K. Hall, and R. A. McPherson, 2010: Quality assurance procedures for mesoscale meteorological data. J. Atmos. Oceanic Technol., 27, 15651582, https://doi.org/10.1175/2010JTECHA1433.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gandin, L., 1988: Complex quality control of meteorological observations. Mon. Wea. Rev., 116, 11371156, https://doi.org/10.1175/1520-0493(1988)116<1137:CQCOMO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • García-Bustamante, E., J. F. González-Rouco, J. Navarro, E. Xoplaki, P. A. Jiménez, and J. P. Montávez, 2012: North Atlantic atmospheric circulation and surface wind in the Northeast of the Iberian Peninsula: Uncertainty and long term downscaled variability. Climate Dyn., 38, 141160, https://doi.org/10.1007/s00382-010-0969-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • González-Rouco, J., J. Jiménez, V. Quesada, and F. Valero, 2001: Quality control and homogeneity of precipitation data in the southwest of Europe. J. Climate, 14, 964978, https://doi.org/10.1175/1520-0442(2001)014<0964:QCAHOP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Graybeal, D., 2006: Relationships among daily mean and maximum wind speeds, with application to data quality assurance. Int. J. Climatol., 26, 2943, https://doi.org/10.1002/joc.1237.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Graybeal, D., A. DeGaetano, and K. Eggleston, 2004: Complex quality assurance of historical hourly surface airways meteorological data. J. Atmos. Oceanic Technol., 21, 11561169, https://doi.org/10.1175/1520-0426(2004)021<1156:CQAOHH>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Guttman, N. B., 2002: Digitization of historical daily cooperative network data. Preprints, 13th Conf. on Applied Climatology, Portland, OR, Amer. Meteor. Soc., 2.8, https://ams.confex.com/ams/13ac10av/techprogram/paper_38849.htm.

  • Hart, R. E., and J. L. Evans, 2001: A climatology of the extratropical transition of Atlantic tropical cyclones. J. Climate, 14, 546564, https://doi.org/10.1175/1520-0442(2001)014<0546:ACOTET>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Haylock, M., N. Hofstra, A. Klein Tank, E. Klok, P. Jones, and M. New, 2008: A European daily high-resolution gridded data set of surface temperature and precipitation for 1950–2006. J. Geophys. Res., 113, D20119, https://doi.org/10.1029/2008JD010201.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hubbard, K., S. Goddard, W. Sorensen, N. Wells, and T. Osugi, 2005: Performance of quality assurance procedures for an applied climate information system. J. Atmos. Oceanic Technol., 22, 105112, https://doi.org/10.1175/JTECH-1657.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hughes, L., 2007: Energy security in Nova Scotia. Canadian Center for Policy Alternatives Rep., 74 pp.

  • Hughes, L., and N. Chaudhry, 2011: The challenge of meeting Canada’s greenhouse gas reduction targets. Energy Policy, 39, 13521362, https://doi.org/10.1016/j.enpol.2010.12.007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hughes, L., M. Dhaliwal, A. Long, and N. Sheth, 2006: A study of wind energy use for space heating in Prince Edward Island. Proc. Second Int. Green Energy Conf. (IGEC-2), Oshawa, ON, Canada, International Association for Green Energy, 322332.

  • Jiménez, P., J. González-Rouco, E. García-Bustamante, J. Navarro, J. Montávez, J. de Arellano, J. Dudhia, and A. Muñoz-Roldan, 2010a: Surface wind regionalization over complex terrain: Evaluation and analysis of a high-resolution WRF simulation. J. Appl. Meteor. Climatol., 49, 268287, https://doi.org/10.1175/2009JAMC2175.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jiménez, P., J. González-Rouco, J. Navarro, J. Montávez, and E. García-Bustamante, 2010b: Quality assurance of surface wind observations from automated weather stations. J. Atmos. Oceanic Technol., 27, 11011122, https://doi.org/10.1175/2010JTECHA1404.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Klink, K., 1999: Climatological mean and interannual variance of United States surface wind speed, direction and velocity. Int. J. Climatol., 19, 471488, https://doi.org/10.1002/(SICI)1097-0088(199904)19:5<471::AID-JOC367>3.0.CO;2-X.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Krause, P. F., and K. L. Flood, 1997: Weather and climate extremes. U.S. Army Corps of Engineers Tech. Rep. TEC-0099, 89 pp.

    • Crossref
    • Export Citation
  • Kunkel, K. E., and Coauthors, 1998: An expanded digital daily database for climatic resources applications in the midwestern United States. Bull. Amer. Meteor. Soc., 79, 13571366, https://doi.org/10.1175/1520-0477(1998)079<1357:AEDDDF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Landsea, C. W., 2007: Counting Atlantic tropical cyclones back to 1900. Eos, Trans. Amer. Geophys. Union, 88, 197202, https://doi.org/10.1029/2007EO180001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lanzante, J. R., S. A. Klein, and D. J. Seidel, 2003: Temporal homogenization of monthly radiosonde temperature data. Part II: Trends, sensitivities, and MSU comparison. J. Climate, 16, 241262, https://doi.org/10.1175/1520-0442(2003)016<0241:THOMRT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lawrimore, J., M. Menne, B. Gleason, C. Williams, D. Wuertz, R. Vose, and J. Rennie, 2011: An overview of the Global Historical Climatology Network monthly mean temperature data set, version 3. J. Geophys. Res., 116, 118, https://doi.org/10.1029/2011JD016187.

    • Search Google Scholar
    • Export Citation
  • Lucio-Eceiza, E. E., J. F. González-Rouco, J. Navarro, H. Beltrami, and J. Conte, 2017: Quality control of surface wind observations in northeastern North America. Part II: Measurement errors. J. Atmos. Oceanic Technol., https://doi.org/10.1175/JTECH-D-16-0205.1, in press.

    • Search Google Scholar
    • Export Citation
  • Mardia, K. V., and P. E. Jupp, 2009: Directional Statistics. Wiley Series in Probability and Statisticcs, Vol. 494, John Wiley & Sons, 456 pp., https://doi.org/10.1002/9780470316979.

    • Crossref
    • Export Citation
  • Martinez, Y., W. Yu, and H. Lin, 2013: A new statistical–dynamical downscaling procedure based on EOF analysis for regional time series generation. J. Appl. Meteor. Climatol., 52, 935952, https://doi.org/10.1175/JAMC-D-11-065.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Meek, D., and J. Hatfield, 1994: Data quality checking for single station meteorological databases. Agric. For. Meteor., 69, 85109, https://doi.org/10.1016/0168-1923(94)90083-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • MSC, 2013: MANOBS: Manual of surface weather observations. 7th ed. Amendment 18, Meteorological Service of Canada Tech. Rep. En56-238/2-2012E-PDF, 488 pp.

  • Nadolski, V., 1998: Automated Surface Observing System (ASOS) user’s guide. NOAA, Department of Defense, Federal Aviation Administration, U.S. Navy Tech. Rep., 67 pp.

  • Najac, J., J. Boé, and L. Terray, 2009: A multi-model ensemble approach for assessment of climate change impact on surface winds in France. Climate Dyn., 32, 615634, https://doi.org/10.1007/s00382-008-0440-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • NCEP ADP OGSO, 1980: NCEP ADP operational global surface observations. National Center for Atmospheric Research Computational and Information Systems Laboratory Research Data Archive. Subset: February 1975–February 2007, accessed 1 January 2010, http://rda.ucar.edu/datasets/ds464.0/.

  • NCEP ADP OGSO, 2004: NCEP ADP global surface observational weather data, continuing from October 1999. National Center for Atmospheric Research Computational and Information Systems Laboratory Research Data Archive, accessed 1 January 2010, http://rda.ucar.edu/datasets/ds461.0/.

  • Newark, M. J., 1981: Tornadoes in Canada for the period 1950 to 1979. Atomic Energy Control Board Research Rep., 88 pp.

  • NOAA, 2003: ASOS product improvement implementation plan (addendum III) for ice free wind. NOAA Tech. Rep., 76 pp.

  • Plante, M., S.-W. Son, E. Atallah, J. Gyakum, and K. Grise, 2015: Extratropical cyclone climatology across eastern Canada. Int. J. Climatol., 35, 27592776, https://doi.org/10.1002/joc.4170.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pryor, S. C., and R. J. Barthelmie, 2014: Hybrid downscaling of wind climates over the eastern USA. Environ. Res. Lett., 9, 024013, https://doi.org/10.1088/1748-9326/9/2/024013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pryor, S. C., and Coauthors, 2009: Wind speed trends over the contiguous United States. J. Geophys. Res., 114, D14105, https://doi.org/10.1029/2008jd011416.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Richards, W. G., and Y. Abuamer, 2007: Atmospheric hazards: Extreme wind gust climatology in Atlantic Canada 1955–2000. Meteorological Service of Canada Science Report Series EN57-36/2007-1E-PDF, 47 pp.

  • Schmitt, C. V., IV, 2009: A quality control algorithm for the ASOS ice free wind sensor. 13th Conf. on Integrated Observing and Assimilation Systems for Atmosphere, Oceans, and Land Surface, Phoenix, AZ, Amer. Meteor. Soc., 12A.3, https://ams.confex.com/ams/89annual/webprogram/Paper145755.html.

  • Shafer, M., C. Fiebrich, D. Arndt, S. Fredrickson, and T. Hughes, 2000: Quality assurance procedures in the Oklahoma Mesonetwork. J. Atmos. Oceanic Technol., 17, 474494, https://doi.org/10.1175/1520-0426(2000)017<0474:QAPITO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Steinacker, R., D. Mayer, and A. Steiner, 2011: Data quality control based self-consistency. Mon. Wea. Rev., 139, 39743991, https://doi.org/10.1175/MWR-D-10-05024.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thomas, B. R., and V. R. Swail, 2011: Buoy wind inhomogeneities related to averaging method and anemometer type: Application to long time series. Int. J. Climatol., 31, 10401055, https://doi.org/10.1002/joc.2339.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thomas, B. R., E. Kent, and V. R. Swail, 2005: Methods to homogenize wind speeds from ships and buoys. Int. J. Climatol., 25, 979995, https://doi.org/10.1002/joc.1176.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vautard, R., J. Cattiaux, P. Yiou, J.-N. Thépaut, and P. Ciais, 2010: Northern Hemisphere atmospheric stilling partly attributed to an increase in surface roughness. Nat. Geosci., 3, 756761, https://doi.org/10.1038/ngeo979.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wade, C. G. N., 1987: A quality control program for surface mesometeorological data. J. Atmos. Oceanic Technol., 4, 435453, https://doi.org/10.1175/1520-0426(1987)004<0435:AQCPFS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wan, H., X. L. Wang, and V. R. Swail, 2007: A quality assurance system for Canadian hourly pressure data. J. Appl. Meteor. Climatol., 46, 18041817, https://doi.org/10.1175/2007JAMC1484.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wan, H., X. L. Wang, and V. R. Swail, 2010: Homogenization and trend analysis of Canadian near-surface wind speeds. J. Climate, 23, 1209, https://doi.org/10.1175/2009JCLI3200.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wieringa, J., 1980: Representativeness of wind observations at airports. Bull. Amer. Meteor. Soc., 61, 962971, https://doi.org/10.1175/1520-0477(1980)061<0962:ROWOAA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • WMO, 1950: Provisional guide to international meteorological instrument and observing practice. World Meteorological Organization Tech. Rep. WMO-8, 422 pp.

  • WMO, 1969: Measurement of surface wind. Guide to meteorological instruments and methods of observation, 3rd ed. Secretariat of the World Meteorological Organization Tech. Rep. WMO-8, 10 pp.

  • WMO, 1983: Measurement of surface wind. Guide to meteorological instruments and methods of observation, 5th ed. Secretariat of the World Meteorological Organization Tech. Rep. WMO-8, 14 pp.

  • WMO, 2008: Guide to meteorological instruments and methods of observation. 7th ed. World Meteorological Organization Tech. Rep. WMO-8, 716 pp.

  • Woodruff, S. D., and Coauthors, 2011: ICOADS Release 2.5: Extensions and enhancements to the surface marine meteorological archive. Int. J. Climatol., 31, 951967, https://doi.org/10.1002/joc.2103.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 508 312 16
PDF Downloads 460 329 15

Quality Control of Surface Wind Observations in Northeastern North America. Part I: Data Management Issues

View More View Less
  • 1 Facultad de Ciencias Físicas, Universidad Complutense Madrid, and Instituto de Geociencias, Universidad Complutense de Madrid–Consejo Superior de Investigaciones Científicas, Madrid, Spain
  • | 2 División de Energías Renovables, CIEMAT, Madrid, Spain
  • | 3 Climate and Atmospheric Sciences Institute, St. Francis Xavier University, Antigonish, Nova Scotia, Canada
© Get Permissions Rent on DeepDyve
Restricted access

Abstract

A quality control (QC) process has been developed and implemented on an observational database of surface wind speed and direction in northeastern North America. The database combines data from 526 land stations and buoys spread across eastern Canada and five adjacent northeastern U.S. states. It combines the observations of three different institutions spanning from 1953 to 2010. The quality of these initial data varies among source institutions. The current QC process is divided into two parts. Part I, described herein, is focused on issues related to data management: issues stemming from data transcription and collection; differences in measurement units and recording times; detection of sequences of duplicated data; unification of calm and true north criteria for wind direction; and detection of physically unrealistic data measurements. As a result, around ~0.1% of wind speed and wind direction records have been identified as erroneous and deleted. The most widespread error type is related to duplications within the same station, but the error type that entails more erroneous data belongs to duplications among different sites. Additionally, the process of data compilation and standardization has had an impact on more than 90% of the records. A companion paper (Part II) deals with a group of errors that are conceptually different, and is focused on detecting measurement errors that relate to temporal consistency and biases in wind speed and direction.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Etor E. Lucio-Eceiza, eelucio@fis.ucm.es

This article has a companion article which can be found at http://journals.ametsoc.org/doi/abs/10.1175/JTECH-D-16-0205.1

Abstract

A quality control (QC) process has been developed and implemented on an observational database of surface wind speed and direction in northeastern North America. The database combines data from 526 land stations and buoys spread across eastern Canada and five adjacent northeastern U.S. states. It combines the observations of three different institutions spanning from 1953 to 2010. The quality of these initial data varies among source institutions. The current QC process is divided into two parts. Part I, described herein, is focused on issues related to data management: issues stemming from data transcription and collection; differences in measurement units and recording times; detection of sequences of duplicated data; unification of calm and true north criteria for wind direction; and detection of physically unrealistic data measurements. As a result, around ~0.1% of wind speed and wind direction records have been identified as erroneous and deleted. The most widespread error type is related to duplications within the same station, but the error type that entails more erroneous data belongs to duplications among different sites. Additionally, the process of data compilation and standardization has had an impact on more than 90% of the records. A companion paper (Part II) deals with a group of errors that are conceptually different, and is focused on detecting measurement errors that relate to temporal consistency and biases in wind speed and direction.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Etor E. Lucio-Eceiza, eelucio@fis.ucm.es

This article has a companion article which can be found at http://journals.ametsoc.org/doi/abs/10.1175/JTECH-D-16-0205.1

Save